An Analytical Method to Detect Collision between Cylinders Using
Dual Number Algebra*

Rajeevlochana G. Chittawadigi and Subir K. Saha

Abstract— Cylinder, a common geometric entity has a
discontinuity at the joining of cylindrical surface and circular-
disks. Hence, collision detection between two cylinders in space
is a difficult task and few have reported formulations to solve
it. In this paper, a novel analytical methodology is proposed to
detect collision or intersection between two cylinders. The
configuration, i.e., position and orientation, between the
cylinders was represented using the four Denavit-Hartenberg
(DH) parameters plus two extra parameters. Dual Number
Algebra was used to extract these six parameters. Tests
involved in collision detection between the cylinders were
between the lines and rectangles in a plane, thus considerably
simplifying the problem of collision detection. As an
illustration, an one-DOF arm modeled as a cylinder with
cylindrical shaped obstacles were modeled and tested for their
collisions. The results were validated with an analytical method
available in the literature and a commercial software.

I. INTRODUCTION

The term ‘cylinder’ typically refers to the volume bound
by a right-circular cylindrical surface and two circular disks
as end-caps. Along with spheres, cuboids, cones, etc.,
cylinders are one of the main geometric primitives used in
Computer Graphics, Computer Aided Geometric Design and
related areas. In applications related to Robotics, medical and
surgical simulations, simulation of various processes,
intersection of different geometric objects in the environment
needs to be determined for realistic simulation, which is
referred as ‘Collision Detection’.

Collision detection, by itself is a very large field and
researchers have proposed different formulations for
geometric objects of various shapes [1]. To simplify the
process, typically, geometric objects (shapes) are enclosed
inside simpler bounding volumes such as spheres, Axis
Aligned Bounding Box (AABB), Oriented Bounding Box
(OBB), etc. and a broad phase test is done between the
bounding volumes. If these volumes intersect, narrow phase
testing is done between the actual geometry (shape) [2].
Cylinder, though a very commonly used geometric entity, is
usually not considered as a bounding volume because
collision detection between two cylinders is reported [3] to be
expensive. Instead, a capsule (cylinders with hemi-spherical
ends) has been suggested to be used as bounding volumes.
Note that the latter tests are quite simple.

* This research was funded by BARC/ BRNS, Mumbai, India, under the
project, “Setting up of a Programme for Autonomous Robotics” at
IIT Delhi, India.

R. G. Chittawadigi is an M.S. (Research) student in the Department of
Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi,
India (e-mail: rajeevlochan.iitd@gmail.com).

S. K. Saha is a professor in the Department of Mechanical Engineering,
Indian Institute of Technology Delhi, New Delhi, India (phone: +91 11
26591135; fax: +91 11 26582058; e-mail: saha@mech.iitd.ac.in).

Exact collision detection between two cylinders in the 3D
Cartesian space, either for broad phase or narrow phase
testing has been reported by few. Eberly [3] considered
Separating Axis Tests (SAT) to determine overlap of two
cylinders along certain directions (each of the cylinder axes, a
vector connecting the centers of the cylinders and vectors on
a plane perpendicular to each of cylinder axes and passing
through their respective centers). It also required optimization
of a function over a spherical surface. A method was
proposed by Ketchel and Larochelle [4] using line geometry
to detect if two cylinders intersect, by determining the
common normal between the cylinder axes and the points
where the normal intersects the axes. Based on the condition
of these points lying inside respective cylinders, different
tests were proposed. However, detailed logical derivation
was not reported. Choi [5] reported cylinder as a Composite
Quadric Model (CQM), where cylindrical surface (quadric) is
bounded by a circular edge and plane on either side,
collectively referred as boundary elements. As CQMs are
semi-algebraic entities, firstly, algebraic methods were used
to compute contact points between all possible pairs of
boundary elements. Secondly, the contact points were
verified if they lay on the actual CQMs. Biermann et al. [6]
used optimization techniques to determine the distance
between different entities of cylinders (cylindrical surface,
circular edge and circular face). A concept of Minkowski
Portal Refinement (MPR) was used in XenoCollide [7] to
represent convex shapes, including cylinder, using a support
function and collision between two cylinders was reported
using an iterative technique. XenoCollide has been
implemented in libccd [8], an open-source collision library
for convex bodies. Kodam et al. [9] used cylinder-cylinder
intersection in Discrete Element Method (DEM) to simulate
the dynamics of particulate systems. They recognized six
contact scenarios between bands (cylindrical surfaces), faces
(circular faces) and edges (circular edges) and gave analytical
expressions to determine the occurrence and type of contact.
However, the axisymmetric nature of cylinders was not
exploited by them. Guo et al. [10] reported limitations with
methodologies proposed by Kodam et al. [9] in certain
configurations of cylinders and proposed several additional
tests and modifications to be incorporated for accurate tests
between finite cylinders. The cylinder-cylinder collision
module in Teikitu Gaming System [11] also uses separating
axis tests but it is based on heuristic solutions and no formal
derivation is available in open literature. An analytical
formulation was reported in [12] to find the proximity of two
cylinders in 3D space. Each cylinder comprised of four
geometric primitives and shortest distance between five
combinations of these primitives was used to conclude if two
cylinders collide or not. However, four of these were solved
in closed form, whereas the fifth combination required
solution of an eighth-order polynomial equation.



In this paper, a novel analytical methodology is proposed
to detect collision between two finite cylinders in 3D space. It
exploits the axisymmetric nature of the cylinders to simplify
the tests which has not been used, to the best knowledge of
the authors, in the reported literature. The reminder of the
paper is arranged as follows: Concepts of Dual Number
Algebra and Denavit-Hartenberg (DH) [13] parameters are
defined in Section II, which are used in Section III for the
derivation of proposed methodology. As an illustration,
collision between a rotating arm and few static cylindrical
objects was tested in Section IV. The results were verified
with those obtained using the algorithm of [4] and the
collision detection module of Autodesk Inventor software.

II. DUAL NUMBER ALGEBRA

A dual number or a dual vector is represented as a sum of
a real part and a dual part. The latter begins with the dual
entity &, which is nilpotent, i.c., &£=0 [14]. Dual Number
Algebra is often used in the field of displacement analysis,
kinematic synthesis and dynamic analysis of spatial
mechanisms as it produces concise and compact notations
[15-16]. The same when extended to vectors is known as
Dual Vector Algebra, which was used by the authors in [17]
to derive an analytical methodology to extract DH parameters
of a serial robot from its CAD model. Here, the concept is
improvised and extended to test collision between cylinders.

A dual number (&) is represented by

a= a+ea*

&)
where a and a* are real scalar number and corresponding
dual number, respectively, whereas &* = 0. Similarly, a dual
vector (a) is expressed as
~ T T
d=a+ea = [ax a, az] + s[a,*c ay a;]
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where a is called the resultant vector and a* is called the
moment vector, which are related as

a*=pxa

(€)

In (3), p is the position vector of any point P on the line
shown in Fig. 1(a). Operations on dual vectors are performed
similar to those on Cartesian vectors. For example, dot- and
cross-products of two dual vectors, also referred to as line
dot- and cross-products [14], are defined by

= (a; + €a}).(a, + €a3) @)

a,.4,
= ay.a, + &(a;.a3 + aj.a,)
a; xa, =(a; + €aj) x (@, + €a3) 5)
=a, Xa, + ¢(a; xa; + aj xa,)
In the same way, the Euclidean norm of a dual vector a is
given by

£ (aa®)
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where ||a|| and ||a|| are the Euclidean norms of the dual
vector 4 and vector a, respectively. Dual unit vector € is
defined as a dual vector whose Euclidean norm is equal to
unity [18], i.e.,

lall = llall +

a a
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A. Dual Angle

The concept of dual angle is now introduced which is used to
represent the relative displacement and orientation between
two lines in space [14]. The dual angle (&), as illustrated in
Fig. 1(b), is defined as

®)

where a is the projected angle between the lines and a*is the
shortest distance between them. If €, and €, are considered
dual unit vectors representing two lines and fi is the dual unit
vector along common normal, the dual angle between them is
determined using

a=a+ea”

cos@ =€,.&, = x +ex* )

sin@ = (& x&,).1 = y+ey* (10)
where x, x*, y and y* are real numbers and the dual angle is

@ = arctan2(sin &, cos @) (11)

elxy = x"y]

= arctan2(y,x) + 71y

Using (8) and (11), the relative orientation («) and distance
between the lines (a*) can be determined. Note that, for
parallel lines, no unique common normal exists and a method
used in [17] should be followed.

(b) Dual angle between two lf;les

(a) Line as dual vector

Figure 1. Line representation using Dual Number Algebra

B. DH Parameters Based Transformation

To represent a coordinate frame with respect to another,
six coordinates or parameters are required, of which three
correspond to the relative position (e.g., position vector) and
remaining three for their relative orientation (e.g., Euler
angles). Melchiorri [19] reported that four Denavit-
Hartenberg (DH) [13] parameters, typically used in geometric
modeling of serial robots, and additional two parameters can
also be used as the required six parameters, referred here as
six DH (SDH) parameters. As illustrated in Fig. 2, the four
DH parameters between frames X;Y;Z; and X{VV/VZIV,
relates a line (Z1V) relative to frame X;Y;Z;. The extra
parameter c is required to locate the origin of frame X,Y,Z,
along Z}V and parameter ¢ to orient X{ (parallel to X}V) with
X,. The six DH parameters are described in Table 1.

TABLE 1. DESCRIPTIONS OF SIX DH PARAMETERS
Parameters Description
b Distance between X; and X] along Z;

Angle between X] and X{! about Z}
Distance between Zi!' and Zi' along X}!
Angle between Z}"and Z}V about XJ!
Distance between X1V and X7 along Z}V
Angle between XY and X, along Z)
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Figure 2. Six DH parameters between two coordinate frames

Given the homogeneous transformation matrix of
Frame 2 (X,Y,Z,) with respect to Frame 1 (X,Y;Z;), which is
denoted as [T,];, the common normal (ie., X{' = XIV)
between Z; and Z, is determined. The corresponding SDH
parameters can then be found as three dual angles between
dual vectors mentioned in Table II and by using (8-11).

TABLEII. Six DH PARAMETERS AS DUAL ANGLES
Parameters Dual Angle Dual Vectors
0 and b ] %, and &
o and a a 211 and 21V
@ and c 1) 1V and 8,

III. COLLISION BETWEEN CYLINDERS

A novel analytical method is proposed here to detect
collision between two cylinders using the SDH parameters
given in Table I. Referring to Fig. 3, a coordinate frame (F;)
is attached to the center of the cylinder C;, whose Z axis (Z)
is along the axis of the cylinder. Similarly, F, is attached to
cylinder C,. For any transformation between them,
corresponding SDH parameters are determined using (8-11).

Figure 3. Six DH parameters: Sequence b, 6, a, a, ¢ and ¢

In this formulation, a modified sequence of
transformations is used. The angular parameter 8 is moved to
the beginning of the series of transformations and distance
parameter @, is moved towards the end, before angle
parameter ¢. This is done to take the advantage of cylinders
being axisymmetric and to facilitate projected rectangles tests
in the proposed formulation. Note that the transformation
between F; and F, is still the same, as shown in Fig. 4. Since

Figure 4. Six DH parameters: Sequence 6, b, a, ¢, a and ¢

cylinders are axisymmetric,  and ¢ do not play any role in
deciding whether two cylinders intersect or not. Hence, only
four parameters, namely b, a, o and ¢, between the frames
Xiv!zl and XYYYZY are sufficient. For the sake of
convenience, Cartesian frame X} YZ! henceforth is referred
as F, and XYV ZY as Fg. Note that all vector equations in the
formulation are referred in these frames.

A. Methodology

As an input to the proposed methodology, transformation
([T,],) of F, with respect to F; is required. Further the radii
(r, and 1) and half of the heights of the cylinders, referred
here as half-extents (s; and s,), are needed. Given two
cylinders, one can find the SDH parameters using the Dual
Number Algebra presented in Section II. To detect collision,
intersection of cylinders of infinite length is tested first by
checking if the separation distance () is greater than the sum
of radii (r;+ 1,). If so, the cylinders do not intersect and there
is no need of further tests. Else, further tests on finite
cylinders need to be performed. For finite cylinders, the
following strategies are undertaken:

e If the cylinders are parallel (i.e., « = 0° or 180° and
b=0, c € R), as shown in Fig. 5(a), the sum of half-
extents (s; and s,) is checked with axial distance
between the centers of the cylinders, i.e., the value of
c. If the sum is greater or equal to the value of ¢, the
cylinders intersect. If the sum is less, the two
cylinders do not intersect.

e For non-parallel cylinders, the points on cylinder
axes where the common normal (X1') intersects are
tested. If these points are within respective cylinders
(i.e., |b] < s; and |c| < s,), then the two cylinders
intersect, as illustrated in Fig. 5(b). This is similar to
“On-On Test” reported in [4]. Here it is referred as
Non Parallel Test (NPT).

If either or both common normal points is/are outside
the respective cylinders, C; and C, are projected onto
Y,Z, plane resulting in two rectangles Q; and Q,,
respectively, as shown in Fig. 6. A simple Separating
Axis Test [2] is performed between the rectangles
and if they do not intersect (Fig. 6(a)), the cylinders
do not intersect and no further test is required. The
coordinates of the vertices of the projected rectangles
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Figure 5. Finite cylinder tests

are computed as explained later. If the projected
rectangles intersect, as shown in Fig. 6(b), the two
cylinders at hand may or may not intersect, which is
determined by the Vertex Edge Test explained
below.

So__-

(a) Non-intersecting rectangles (b) Intersecting rectangles

Figure 6. Projection Test between rectangles

B. Vertex Edge Test

First, a hypothesis is proposed which will be verified
later.

Hypothesis: If two cylinders are colliding, a volume of
intersection exists between them which can be determined
using numerical integration techniques [20]. In the proposed
methodology, this step is avoided by considering only the
boundary conditions of the volume of intersection along X.
At these boundary conditions, the cross-sections of the C;
and C, on a plane parallel to Y,Z, result in rectangles R; and
R,, which would be touching each other.

For example, in Fig. 7(a), the volume of intersection of
two intersecting cylinders is illustrated, for which the
boundary conditions at u, and u, from Y,Z, along X, in the
top-view shown in Fig. 7(b). The cross-section of the
cylinders at boundary condition u,; is shown in Fig. 7(c).
Note that the two rectangles are touching. Similarly
rectangles are shown touching for boundary condition u, of
Fig. 7(d).

Proof: The homogeneous transformation matrix ([Tg],)
representing Fg with respect to F, is determined as

1 0 0 a
_ 10 cosa —sina —csina
[Tsla = 0 sina cosa b+ccosa (12)
0 0 0 1
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(b) Boundary conditions (Top-view) (d) Cross-section at u,

Figure 7. Boundary conditions of Vertex Edge Test

For the cross-section plane at a distance of u from Y,Z, as
shown in Fig. 8, the expressions of the coordinates of vertices
of Ry in F,, are

ko= [u v s]" (13)
Mla=[u vy s]” (14)
m ], = [u v, —s]" (15)
nla=[u v —s]" (16)
where v; and s; are half-breadth and half-extent,

respectively, of R; as shown in Fig. 8(a). Similarly, vertices
of R, in Fy and after transforming to F are given by

Frame B

Frame 4
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(b) (I}eometr}lf of C;

(c) Geometry of C,

Figure 8. Rectangles R, and R, at a boundary condition



kylp=[w v, Sz]T; [kzla = [Tplalkzlp  (17)

Llp=[w -v, Sz]T ; [I2]a = [Telallzlp (18)
(mz]p = [w —v; =s,]" 5 [my], = [Talalm,lp (19)
] =[w v, —s,]7 5 [m]a = [Tplalnzlz (20)

where w = u — a, v, and s, are half-breadth and half-extent
of R,, respectively.

The condition for touching at the boundary exists if two
rectangles just touch each other. It can be established by
constraining a vertex of one rectangle to lie on an edge of the
other. This can be derived as algebraic equation in u. The
tests are done for 32 possible combinations of edges and
vertices, of which two are illustrated here. Tests on remaining
combinations are similar.

1) Vertex N, on Edge K;L,

The condition for vertex N, to lie on edge K;L; is
obtained by equating the Z components of vertex N, and K;
in F, using (13) and (20), as illustrated in Fig. 8(a), i.e.,

s;=vy,sina+ (c—sy)cosa+ b 20
which is rearranged as
v, = A-bros)cosa (22)

sina

Using the geometry of C,, Fig. 8(c), a quadratic equation in u
is formed, i.e.,

u=a+.rn?—v,? (23)

After solving (23), one or both of the real solutions of u are
tested to lie in the interval defined by

fu € Rla—min(r,n) <u < max (r, 1)} (24)

For value(s) of u lying in the interval of (24), the Y
component of N, is tested if it lies on the edge K;L; and not
beyond it. If so, it is concluded that the projected rectangles
R, and R, intersect and hence the cylinders C; and C,
intersect and tests for the remaining combinations of vertices
and edges are not required.

2) Vertex N, on Edge L1 M,

The condition for vertex N, to lie on edge L,M;, as
shown in Fig. 9, is obtained by equating ¥ components of N,
and L, using (14) and (20), i.e.,

—v; =v,cosa— (c—s,)sina (25)
Which, unlike (21), has term of v;. Substituting f= 1, g =
—cosa and h = —(c — s,) sina in (25), a general form is
given by
fvi+gv,+h=0 (26)
From cylinders’ geometry, Fig. 8(b-c), two equations are
ut+v2=n? 27
(a—u)?+ v,% =12 (28)

Combining (26-28), a quartic equation in u is then obtained

as follows:
/11‘“.4 + 12u3 + /13“.2 + A4u + AS = 0 (29)

where the coefficients of the equation are

Mo=—f*+2fg* - g* (30)

A, = —4af?g? + 4ag* (€2))

A3 = 2rif*+2af%g? — 2rif?g% — 2r2f%g® (32)
—6a’g* + 2r2g* — 2f%h? — 2g°h?

Ay = 4ar?f?g? + 4ag* — 4arig* + 4ag*h?  (33)

As = —rif* = 2a*rif?g* + 2ririf?g” (34)

—a*g* + 2a’r}g* —r}g* + 2r¥f?h?
—2a?g?h? + 2r}g*h? — h*

Equation (29) can be solved using the analytical technique
reported in [21]. Note that only two solutions of u are real
and geometrically feasible. If one or both of the real solutions
of u lie(s) in the interval defined in (24), the Z coordinate of
vertex N, is determined to find if N, lies on the edge L, M,
and not beyond it. Hence collision is concluded.

Note that by substituting © = 0 and @ = 0 in (13-20), the
coordinates of the projected rectangles @, and @,, introduced
in Fig. 6 can be determined.

Frame B

Frame 4

Figure 9. Condition for vertex N, to lie on edge L, M,
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IV. APPLICATION

For broad phase collision tests between robot links and
objects in the environment, Oriented Bounding Box (OBB)
was used in [22], whereas Axis Aligned Bounding Box
(AABB) was used in [23]. If they collide, actual geometric
shapes of the robot links are then tested for collision. As most
of the robot links are not rectangular blocks but cylindrical in
shape, the broad phase tests are too conservative. Hence, to
overcome this, the links are considered as cylinders
(bounding volume), as also reported in the literature, e.g., [4].

In this paper, as a proof-of-concept, cylindrical shaped
link for one-DOF arm and cylindrical obstacles were
modeled in Autodesk Inventor software, as shown in Fig. 10.
The proposed analytical method was implemented as an
addin module inside the software using Visual C#. The joint
was rotated programmatically and the collision tests between
the arm and the obstacles were determined using the
proposed methodology. The tests were also performed using
the methodology in [4] and collision detection module of
Autodesk Inventor. The results of the collision tests, i.e., the
boolean (true or false) value, matched perfectly for each
increment in joint angle, thus, validating the proposed
methodology. Note that Autodesk Inventor uses a 3" party
commercial library by D-Cubed [24] for collision detection.
No detailed mathematical formulation on D-Cubed is
available in open literature. On the other hand, the authors of
[4] used MATLAB environment for the implementation of
their algorithm.
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Figure 10. One-DOF arm with obstacles

For the proposed methodology, the sequence or the flow
of the collision tests conducted between ‘Arm’ and
‘Obstacle 1°, for one complete rotation of the joint axis, with
an increment of 1° is reported in Fig. 11. Note that majority
of the rejection occurred in “Infinite Cylinders Tests”. During
the finite cylinder tests, the “Projection Test” also had high
percentage of rejection due to which very few number of
“Vertex Edge Test”, which are relatively expensive, were
carried out. Similar results were obtained for the tests with
the other two obstacles having early exit from the tests.

Arm and Obstaclel

o ;

Infinite Cylinders Test

35% M

Non Parallel Test

4 0%

Legend
T ~—
5% ,_____<_Q~§°_A’_ T =True
! No Collision : F = False

Figure 11. Flow of collision tests between ‘Arm’ and ‘Obstacle 1’

In terms of efficiency, the proposed algorithm appears to
have performed best among the three algorithms compared
for the present task, as it took CPU' time of about 0.05-0.12
milliseconds (ms), whereas those using [4] and Autodesk
Inventor took about 0.17-1.8 ms and 2-16 ms, respectively.
Since the above computations were carried out in different
software platforms, the CPU times may not convey the
effectiveness of the theoretical formulations provided by
different authors. However, they do reflect the efficiencies
the way they were implemented by the authors. In future,
more rigorous tests will be carried out for more complex
tasks and using other cylinder-cylinder collision formulations
reported in the literature in order to establish the robustness
and efficiency of the proposed algorithm.

V. CONCLUSIONS

Cylinders are one of the most common geometric entities
that are used in various fields of visualization but there are
very few exact and accurate methods to detect collision or
intersection between them. In this paper, an analytical
methodology is proposed for the same. The methodology

System Configuration: Windows XP 32 bit Operating System,
Intel Core 2 Duo (3.0 GHz) processor and 4 GB RAM

relies on planar geometries, thereby, making the collision
tests fairly straightforward, unlike those reported in the
literature which are based on either 3-dimensional spatial
geometries or iterative procedure. Based on the CPU times of
three different algorithms used to test the collision of the task
shown in Fig. 10, the proposed algorithm has been proven to
be accurate and most efficient.
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