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Fig. 22. Impulse responses (dashed line: type 2; solid line: type 3).

One is the use of a nonlinear elastic link. An example of such elas-
ticity is one known for the TiNi shape memory alloy (SMA). When
the strain is large, the maximum stress is limited. It is also known that
elasticity and viscosity can be controlled by changing temperature of
SMA. Adopting SMA as link material can be a promising approach to
integrate a safety of the humanoid robot. The other is a joint design
of active and passive compliance. By coupling these two compliances,
we will obtain the appropriate compliance characteristic, which will be
one of our future problems.

VIII. CONCLUSION

In this paper, we have proposed, designed and fabricated the new
mechanism cybernetic shoulder for the humanoid robot shoulder.

1) The advantages of the cybernetic shoulder are compactness,
large workspace, human-like motion, singularity free in the
workspace and small backlash. And because of the closed kine-
matic chain, it is easy to introduce the mechanical compliance
to the cybernetic shoulder.

2) We have discussed mathematics to solve the kinematics of the
cybernetic shoulder.

3) We evaluate the human-like motion of the cybernetic shoulder
by comparing with the human natural motion.

4) We can design the elasticity and the viscosity of the cybernetic
shoulder by changing the material of link E which determines
the kinematic constraints.

5) We have designed two types of new link E. One is �3 mm
carbon fiber link which has large compliance and small
damping. The other is a �5-mm carbon fiber link with a
damper using Temper Foam.
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Dimensional Design of Hexaslides for Optimal
Workspace and Dexterity

A. B. Koteswara Rao, P. V. M. Rao, and S. K. Saha

Abstract—The paper presents the dimensional design of a class of parallel
manipulators, namely, Hexaslides. The design of hexaslides is formulated
as a multiobjective optimization problem considering workspace and dex-
terity as dual objectives. As the relative emphasis on workspace and dex-
terity varies depending on the application, a set of Pareto-optimal solutions
is found. The present analysis is a useful tool for designers to select suitable
hexaslide parameters for a given application, particularly, in machine tool
applications.

Index Terms—Dexterity, dimensional design, hexaslide, multi-objective
optimization, workspace.

I. INTRODUCTION

A general hexaslide manipulator consists of six distinct rails is
shown in Fig. 1. The sliders move along the rail axes, whereas the legs
of constant length are connected to the sliders through universal joints
Uifor i = 1 to 6. The other end of each leg is connected to the tool or
mobile platform through spherical joints indicated with Bi. Actuation
of the sliders along their respective rail-axes drives the tool platform.
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Fig. 1. General hexaslide machine tool.

As the main moving parts, namely, the legs, can be made light but
stiff, the hexaslides find applications in machine tools, coordinate
measuring machines, etc., where high accuracy and precision are re-
quired. Hexaglide [1] consisting of coplanar and parallel rails, HexaM
[2] consisting of slanted rails, and Linapod [3] with the rails in vertical
direction are three major machine tools based on hexaslides. These are
all based on similar drive systems but with different rail arrangements.

In the design of hexaslidemachine tools, the workspace and dexterity
are considered two important performance indices.Workspace of a hex-
aslide is the space reachable by the tool while the dexterity is its ability
to arbitrarily change its position and orientation, or apply forces and
torques in arbitrary directions during machining. Complex workspace
is one of the major drawbacks of the hexaslides. Moreover, the Jacobian
matrix (J) that relates the actuated joint rates to the tool platform veloc-
ities is not constant and not isotropic; the performances vary consider-
ably for different points in the workspace and for different directions at
one given point. This is a serious drawback for the hexaslides to be used
as machine tools [4], [5]. Hence, prior to the design of any hexaslide
machine tool, it is necessary to identify suitable design parameters that
offer the desired performance characteristics. In practice, relative em-
phasis on dexterity and workspace could vary depending on the appli-
cation. Hexaslides that offer good workspace characteristics often per-
form poorly on dexterity front and vice versa. Hence, there is a need for
addressing workspace and dexterity tradeoffs, in design of hexaslides,
which has not been addressed so far. This has been attempted here by
finding a set of nondominated hexaslides by multiobjective optimiza-
tion [6], [7]. The workspace and dexterity related studies of hexaslides
can be found from [8], [9], and others. However, there were no efforts
made towards optimization and development of Pareto-solutions.

In this work, hexaslides having rails parallel by pairs and symmetri-
cally arranged are considered for finding optimal workspace and dex-
terity. In the past [8], we made a comparison between the hexaslides
with rails paired and unpaired. In both the cases, the rails are sym-
metrically arranged. It was observed that the hexaslides with rails par-
allel by pairs offer better workspace and dexterity. The same is evident
from [10]. To describe general hexaslide geometry (Fig. 1) completely,
60 design variables are required. They are the three Cartesian coor-
dinates of the start and end points of the rails (Ai and Ei) in the fixed
frameO-XY Z , the center of spherical joints (Bi) in the moving frame
Op � xyz, and the leg lengths li for i = 1 to 6. However, for a sym-
metric hexaslide with rails parallel by pairs, as shown in Fig. 2, only
seven parameters are sufficient to describe it. These are Rb (radius of
foot print circle on which the starting points of the rails lie),Rt (radius

Fig. 2. Schematic diagram of a symmetric hexaslide with rails parallel by
pairs. (a) Seven design parameters. (b) Spacing between spherical joints.

Fig. 3. Kinematic chain (for i = 1) of the hexaslide.

of tool platform), S (rail-length), L (leg length), G (gap between adja-
cent rails that are parallel), � (slant angle of rails with horizontal), and
' (separation angle between spherical joints on the tool platform).

This paper is organized as follows. Section II presents the kinematic
model of a general hexaslide, whereas some key performance measures
are given in Section III. Section IV is presented with the optimization
problem formulation with the results appearing in Section V. Finally,
the conclusions are given in Section VI.

II. KINEMATIC ANALYSIS

For the kinematic analysis, consider the loopOA1U1B1OpO shown
in Fig. 3, wherein O-XY Z is the fixed frame of reference attached to
the base, Op � xyz is the moving frame attached to the tool platform,
ppp � OOp � [px; py; pz ]

T is the position of center of the moving plat-
form Op in fixed frame, and R is the Rotation matrix representing the
orientation of the moving frameOp�xyz with reference toO-XY Z .
Now, for i = 1 to 6, li is the length of the ith leg, di is the distance of the
ith slider fromAi, Si � AiEi is the length of the ith rail, uuui is the unit
vector along the ith rail, aaai � OAi, dddi � AiUi, llli � UiBi = liuuu

l
i,

sssi � AiBi, bbbi � OpBi in moving frame. All the vectors except bbbi
are expressed in the fixed frame.
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A. Position Analysis

From Fig. 3, sssi, for i = 1 to 6, can be written as

sssi = ppp+R bbbi � aaai; where aaai = dddi + llli: (1)

Since dddi = diuuui, (1) can be re-written as,

ppp+R bbbi � aaai � llli = diuuui (2)

or

(ppp+R bbbi � aaai � diuuui)
T (ppp+R bbbi � aaai � diuuui) = l

2
i : (3)

The inverse kinematic problem, i.e., to find the position of actuators,
di, for given ppp and R, can be solved using (3), i.e.,

dddi = sss
T
i uuui � (sssTi uuui)

2
� (sssTi sssi � l2i ); for i = 1 to 6: (4)

Equation (4) offers two solutions, d(1)i and d(2)i . The true solution can
be identified based on the motion continuity, i.e., a given pose is achiev-
able by the tool platform if the values of di satisfy the following con-
straint, alongwith the constraints imposed due to range of the motion
allowed by the universal and spherical joints, namely

0 � di � Si; for i = 1 to 6: (5)

B. Velocity Analysis

The time derivative of (2) yields

_diuuui = vvv + !!! �R bbbi � !!!i � llli (6)

where _di is the linear speed of the ith actuator, vvv and !!! are the three-
dimensional (3-D) linear and angular velocities of the tool platform,
and !!!i is the angular velocity of the ith leg. Taking the dot product of
llli on the both sides of (6), we get

_diuuu
T
i llli = [vvv + !!! �R bbbi]

T
llli: (7)

Equation (7) can be represented in the matrix form as

Ja _ddd = Jttttp (8)

where tttp � [!!!T vvvT ]T is the six-dimensional (6-D) twist vector of the
end effector, _d � [ _d1 . . . _d6]

T , is the 6-D joint-rate vector, and the 6�
6 matrices, Ja and Jt are given by

Ja �

lll
T
1 uuu1 0

�

�

�

0 lll
T
6 uuu6

Jt �

(Rbbb1 � lll1)
T lll

T
1

� �

� �

� �

(Rbbb6 � lll6)
T lll

T
6

: (9)

Equation (8) may be re-written as

_ddd = Jtttp (10)

where the 6 � 6 Jacobian matrix, J , is expressed as

J � J
�1
a Jt: (11)

Note that Ja becomes singular when lllTi uuui = 0, for any i = 1 to 6. This
corresponds to stationary singularity [11]. In this type of singularity,
the hexaslide loses one or more degree of freedom (DOF). When Jt be-
comes singular it refers to uncertainty singularity where the hexaslide
gains one or more DOF.

III. PERFORMANCE MEASURES

Among the measures of workspace the most commonly used one is
the constant-orientation workspace [11], i.e., the 3-D Cartesian space
reachable by the tool center point (TCP), while the orientation of the
tool platform is constant. The determination of the exact workspace
volume is indeed a difficult problem since the workspace boundary is
defined by a set of highly nonlinear equations. In this paper, a simpler
method, namely, the search method based on the inverse kinematics of
Section II-A [12] is adopted. Search proceeds by defining a bounding
box, say,1:2m�1:2m�1:2m,covering amaximumpossible reachable
space of a hexaslide, and then slicing the bounding box into a number of
layers, e.g., 40, with each layer being discretized into points. For each of
these points the distance, di in Fig. 3, is calculated and the constraints,
(5), are checked. If the constraints are not violated, the point under com-
putation is considered within the workspace, otherwise it is outside the
workspace. The workspace volume is then computed as

WSV = �Am�z (12)

where Am is the reachable area in the mmmth layer, and �z is the layer
interval. The non-dimensional indexes of workspace may be obtained
by normalizing the workspace volume with either the cube of actuator
stroke [13] or the hexaslide size [8]. In this paper, theworkspace volume
index (WVI), reported in [8], is used, which is obtained as

WVI =
WSV

Size of the Hexaslide
100 (13)

where the size of the hexaslide is the volume of the least sized cylinder
enclosing the hexaslide and its workspace (Fig. 2).

Another index considered here is dexterity, which is defined as the
condition number of the associated Jacobian matrix J , [14]. Geo-
metrically, the Jacobian matrix, J , describes a hyperellipsoid having
lengths defined by its singular values. The condition number represents
the sphericity of the hyperellipsoid. The conditioning of J and the
manipulability ellipsoid associated with J were used to optimize the
workspace shape and performance uniformity of the Orthoglide [15].
An index that considers the dexterity of the manipulator over the entire
workspace, namely, global dexterity index (GDI), [8], [16], and others,
is given by

GDI =
W

1
�(J)

dW

dW
: (14)

In (14), dW is an infinitesimal small element representing one of the
workspace points and�(J) is the condition number of the Jacobian ma-
trix, J , at that point, which can be obtained using �(J) = kJkkJ�1k,
as reported in [16], in which k:k refers to the Euclidean 2-norm. It may
be noted that the evaluation of GDI requires inverse kinematics at each
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point within the workspace, and consideration of constant-orientation
to the tool platform, in the present work, yields unique value for �(J).
Also, note that the ideal or least value of �(J) is unity referring to the
isotropic condition. Hence, the more the GDI the more will be the uni-
formity in the kinematic performance characteristics.

It may be noted the first three columns of the Jacobian matrix, J
of (11), have length units while the last three columns are dimension-
less. This dimensional inhomogenity gives rise to inconsistencies while
evaluating the GDI. Various approaches, to circumvent this problem,
are reported in [14], [17], and others. In [9], [10], [14], and others, the
first three columns of J are divided by the characteristic length (Lc)
which leads to the definition of the normalized Jacobian matrix, Jn.
Accordingly, the dexterity index GDI is modified as

GDI =
W

1

�(J )
dW

dW
(15)

where �(Jn) is the condition number of the normalized Jacobian ma-
trix at a point within the workspace that is computed as �(Jn) =
kJnkkJ

�1
n k. For the suitable choice of characteristic length, the GDI

is evaluated using (15), taking Lc = Rt, Rb, L, and S. It has been
observed that the GDI obtained with Lc = Rt is maximum. So, Rt is
chosen as the characteristic length.

IV. OPTIMIZATION

The performance of a hexaslide depends highly on its architecture.
It is always desirable to have both the workspace and dexterity values
high. In the literature, very little work is traced in this direction. Ma-
jority of the researchers proposed optimum design procedures: 1) on
dexterity, kinematic isotropy [18]; 2) on criterion with equal weightage
to both the workspace and singularity [19] and 3) on a linear combina-
tion of dexterity measure and workspace index [13]. Mathematically,
the optimization problem with multiple criteria or objectives may be
stated [6] as

Maximize f = [f1(x); f2(x); . . . ; fm(x)]

subject to x 2 


 (16)

where x is the vector of design variables, and 


 is the feasible region
or feasible set, and fi(x), for i = 1 to m, is the function of the ith
objective. When there is a conflict between different criteria, it is im-
portant to have a global picture of the optimum solution(s), and the cor-
responding Pareto-set/front [6], [7]. A design variable vector x� 2 




is Pareto optimal for (16) if and only if there is no vector x 2 


 with
the characteristics

fi(x) � fi(x
�) for all i; i = 1; 2; . . . ;m (17a)

and

fi(x) > fi(x
�) for at least one i; i 2 (1;m): (17b)

The optimization problem is now formulated for the design of a hex-
aslide with the best possible WVI and GDI. The optimization problem
for the design of hexaslides can be restated as

Maximize f(X) = g1(WVI)

subject to � Design variable limits

�Workspace constraints

� GDI � dc (18)

TABLE I
GEOMETRIC PARAMETERS OF HexaM [21]

Fig. 4. Pareto-front of hexaslide machine tool for workspace and dexterity.

Fig. 5. Workspace relative to the size of hexaslide corresponding toP andP .

and/or

Maximize f(X) = g2(GDI)

subject to �Design variable limits

�Workspace constraints

� WVI � wc (19)

where g1 and g2 are the functions given by (13) and (15), respectively,
whereas dc and wc are the lower limits on GDI and WVI, respectively.
The Pareto-solutions are found, in the present work, from (18) and, or
(19), using Sequential Quadratic Programming of MATLAB [20].

V. RESULTS AND DISCUSSION

Evaluation of WVI and GDI, as described in the previous sections
have been implemented in MATLAB. To validate the results of
workspace and dexterity, an existing hexaslide machine tool, namely,
the HexaM, is considered. The geometric parameters of HexaM [21],
according to the notations shown in Fig. 2, are presented in Table I.

The results are obtained considering a suitable Cartesian bounding
box of 1:2 m � 1:2 m � 1:2 m size and grid elements of 0:03 m �
0:03 m� 0:03 m size, from the MATLAB programs, as

WSV = 0:327 m3
; WVI = 9:954%; GDI = 0:222:

Note that the workspace volume computed here is same as that reported
in [21]. The computation time for finding the WVI and GDI is 211 s on
a 1.7 GHz, 256 MB RAM -P IV processor. To find a suitable grid size,
during optimization, the WVI and GDI of the HexaM are found con-
sidering different grid sizes. Reduction in grid size increases the com-
putation time drastically, with no significant changes in WVI and GDI.
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TABLE II
PERFORMANCE INDICES FOR PARETO-SOLUTIONS OF HEXASLIDES AND CORRESPONDING PARAMETERS

Fig. 6. Variation of reciprocal of Jacobian condition number within the central horizontal plane of the workspace of typical hexaslides.

For the estimation of WVI and GDI during the optimization, a grid of
0:04m� 0:04m� 0:03m is used as this offers error in the evaluation
of both WVI and GDI is less than 0.1%. Details are not reported due to
the space limitation. Now obtaining typical nondominated hexaslides,
of HexaM type, is presented. For the multiobjective optimization, the
sequential quadratic programming (SQP) method is adopted wherein
the QP subproblem is solved at each iteration. A critical issue to obtain
an optimum design solution is the choice of a proper initial guess. The
optimality of the obtained solutions was confirmed by implementing
the optimization algorithms a number of times from different initial
solutions.

Considering the constraint over the GDI, i.e., dc = 0:1 in (18), hex-
aslides offering maximum WVI is found. The point,P1, in Fig. 4, in the
Pareto-front corresponds to the values in first row of Table II. As the rel-
ative emphasis on workspace and dexterity vary depending on an appli-
cation, the optimization experiments are continued to find some other
Pareto-points by imposing constraints on the GDI values. The corre-
sponding points are P2, P3, P4, and P5 of Fig. 4, where dc = 0:2, 0.3,
0.4, and 0.5, respectively. Optimization results are presented in Table II.
It may be noted that all the length parameters of hexaslides reported in
Table II are normalized by takingRb = 1:0m. In Fig. 4, Ph represents
the WVI and GDI of the HexaM. Note here that when the priority on
workspace is high the hexaslide corresponding to the Pareto-point P1

is suitable as it offers highest WVI, namely, WVI = 17:37%, while
GDI is lowest, i.e., GDI = 0:11. On the other hand, when the highest
dexterity is preferred, the hexaslide corresponding to the Pareto-point
P5 should be chosen as it offers highest GDI (= 0:5) and lowest WVI
(= 2:65%). Thus, a gain of 14.72% in WVI is expected with a reduc-
tion in the GDI value by 0.39, and vice versa. Though the hexaslides
corresponding to the Pareto-pointsP3,P4, andP5 offer less WVI when
compared to the HexaM, these are superior in terms of the dexterity. On
the contrary, the hexaslides corresponding to the Pareto-points P1 and
P2 offer less dexterity when compared to the HexaM but are superior
with respect to the WVI. The workspaces offered by two hexaslides
that correspond to the Pareto-points, P1 and P5, are shown in Fig. 5.
The lower and higher dexterity for P1 and P5, respectively, are quite
obvious from Fig. 6, where variations of the reciprocal of the condition

number of Jacobian matrix, i.e., [1=�(J[n)], are shown within the cen-
tral horizontal section of the workspaces.

As the dexterity requirements are high in case of a class of Machine
Tools such as Tool and Cutter Grinder due to the complex kinematic
motions, the hexaslide corresponding to Pareto-pointP5 should be con-
sidered. On the contrary, the workspace is primary interest in 3 axis
Milling and, hence, the hexaslide corresponding to Pareto-point P1 is
suitable. Other observations are: 1) smaller gap between the rails offer
better dexterity but adversely affects the workspace; 2) longer rails and
legs offer larger workspace with less dexterity and 3) larger tool plat-
forms offer high dexterity and less workspace.

VI. CONCLUSION

Kinematic modeling and analyses, and the dimensional design of
hexaslides are presented. The key contributions are as follows.

• Multi-objective optimization of hexaslides was carried out with
dexterity and workspace as dual objectives.

• All the seven design variables that are necessary for the complete
description of the symmetric hexaslides with rails parallel by
pairs were considered;

• As the relative emphasis on workspace and dexterity vary for
different class of Machine Tools, a set of nondominated hexas-
lides, are obtained.

• The nearness to HexaM in the centre of Pareto-front confirms its
equal emphasis on workspace and dexterity.

The methodology proposed, and the results reported in this work
are useful for the selection of a suitable hexaslide. Further research
on the optimum design of hexaslides including the stiffness and the
orientation workspace is underway and will be the subject of future
correspondences.
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Conceptual Design and Dimensional Synthesis for a
3-DOF Module of the TriVariant—A Novel 5-DOF

Reconfigurable Hybrid Robot

T. Huang, M. Li, X. M. Zhao, J. P. Mei, D. G. Chetwynd, and S. J. Hu

Abstract—This paper deals with the conceptual design and dimensional
synthesis of a 3-DOF parallel mechanism module which forms the main
body of a newly invented 5-DOF reconfigurable hybrid robot named
“TriVariant.” The TriVariant is a modified version of the Tricept robot,
achieved by integrating one of the three active limbs into the passive
limb. The idea leading to the innovation of the module is systematically
addressed. Its kinematic performance is optimized by minimizing a global
and comprehensive conditioning index subject to a set of appropriate
mechanical constraints. It is concluded that the proposed hybrid system
is more cost-effective and has a competitive kinematic performance in
comparison with the well-known Tricept robot.

Index Terms—Conceptual design, dimensional synthesis, parallel kine-
matic machines (PKMs), reconfigurable manufacturing.

I. INTRODUCTION

Parallel kinematic machines (PKMs) have drawn continuous interest
in both industry and academia in the machine tool/robot sectors since
the 1990s because of their potentially desirable fast dynamic perfor-
mance, rigidity, and acceptable accuracy. It was clearly indicated that
one of the future trends toward the PKM development is to make full
use of its reconfigurability and multiple functionality [1]. Indeed, char-
acterized by the multiple closed-loop kinematic chains with identical
components, the PKM concept would most likely lead to the stan-
dardization of drive units, joints, and interfaces within a machine and
thereby enable the generation of a special class of reconfigurable ma-
chine tools/robots [2]–[5].

Although numerous PKMs with different architectures have been
developed previously [6] (the well-known Hexapods, Hexaglide, and
Delta, for example), few of them really possess true reconfigurability
because of the limited modularization at the component level. Here,
“reconfigurability” means the capability to form a multi-axis, multi-
functional, and plug-and-play module that can then be used to con-
figure different machines. In this sense, the Tricept robot [see Fig. 1(a)]
with parallel-serial architecture stands out [7], with its high dynamics,
rigidity, and large workspace/footprint ratio. Today, various versions of
the Tricept have been successfully used as machine tools and/or robots
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