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Abstract

I the realm of the dynamic analysis of machinery for de-
Sign purpases, the determination of nen-working constraint forces,
which do ot appear in simulation studies, is of the utmost im-
portance.  The said forces can be readily computed if suitahle
kinematic constraints are available, In this paper, a formulation
of kinematic constraints is adopted, that pertains to the nofu-
ral orthogonal complement method. introduced elsewhere. for the
dvnamic modeling of mechanical systetns. This formulation is il-
lustrated with several examples,

1 Introduction

Mechanical systems avising in machinery are usualiy subjected o
Kinematic constraints that it the motion capabilitios of the in-
dividual machine elements. These constraints can be expressed
algebraically by a set of constraint equations, which can take on
a variety of fors. These forms depend largely on the clioice of
the formeilation method. For example, in modeling holonomic sys-
tens with either the Newton-Enler or the Euler-Lagrange tieth-
ods [Meirovitch, 1970). consteaint equations m the form of—
tsually nonlinear —functions of the generalized coordinates are
established, Alternatively, for example, as proposed by Kane and
Wang (1965) and Huston and Passerello (1974, coustraints can be
expressed as linear, although not necessarily homogeneous, equa.
tions in the generalized velocitios.

Within the framework of the met hodology wermed fthe natural
orthogonal complement (Angeles and Leoe. 1988}, botls holanomic
aud nonholonomic constraints are expressed as a system of equa
tions that ave uwear and homagenéous in the twists of all the hod-
ies of the systewi. Heve, we understand as Uie twist of a hody a
G:dimensional vector containing the Hecessary and sufficient infor-
mation determining the velocity field throughout the body. It thus
contains the thee components of Lhe angular velocity vector and
the three components of the veloc ty of the mass center, altliough
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auy other point of the boady conld b yied, The afQtenientioned
methodolagy was originally praposed fur holononiic systeqis, f
it was [ater extended to nonholonomic sy sty [Sali atd Angeles,
1881). It has also been successfully used for the simulstion of i
axis-seriad robotic manipultors (Angeles and Ma. DISS), Hesill-
link manipulators (Cyril. Angeles and Mista, 19891 and antaiat e
guided vehicles (Saha and Angeles, I8DY. The erueial step msnc
cessfully modeling a broad class of mechanical svstenis with rhe
natutal opthogenal complement is the represeutation of e Kiue-
matic constraiats. We illustrate this formulation as appliel 1
several mechanical systems. Moreover. dvnamies meodels of 11ou-
systems are ohlained nsing this ethiod,

2  Kinematic Constraints
First. the tuust t, of the 2l gl Tk all the maachine ar .,
undergoing an arhitrary motion in the thvee-inensiann ] spae.
i defined fu terms of its angular velority, w.. and the
the cotresponding mass conter. &, loth hewg, e gmergl. e
dimensional vectors, Henve,

(2]

Le;

Moresver. We assume that the il Body: ol hie seston sinder <t

comprising [ vigid links and & Kinenwtic pairs. is vl 1 e
Jthdink through eithier 3 holonomic ur nonholonstuic vaupling
Thus, the coupliug of this ik with (e Jth link is gepveseined
a linear homogeneous =guation in the twists of the twe catiplind
links. namely,

velority wf

t,

it

as

At + At =0, lori= -0 fn g = anda 2 7 (il

Thus. for ¢ scalar coustraints, the i = eoeflicent matpioes A,

snd' A, ate. i gengral, configtirationsdependent  Fuihiminon-
a holonomie coupling praduces sis seatar, linenriy depenident vop

straints, wheress a noubolaiumic voufiling produces 1fyee
pendent scalar constraints (Salia sl Nageles. 1991 §:

i



3 DModeling Technique

The method of the natural ovthagonal complement, introduced in
Angeles and Lee (1988) and based on the kinematic formulation
outlined in Section 2. is desciiled briefly. Some vectors and mato-
errs, used] todlerive the equations of motion of a system consisting
of [ links, are defined helow:

wi the wreneli acting on the sth link, 1t 8 defined, i decordance
with the definition of t;. as

where n, and £ denote the rosultant torgue aud the resultant foree
acting b the nyss center of the h link. respectively,

0 the cross-product matrix assoctabed with veetor w,. It is de-
fmed as

=

n
fi

wl

_ Hw, % X)
= ax
for an arbilvary S-dinensional vector x, Henceforth, the eross-
profuct matnx of any Fdimensional vector v will be denoted by
V. unless atherwise indicated. :
W, & M.: Gx6 matrices of erfended angular velocity, and of re-
tendad muss. respectively. These are

ﬂ| (8] ol 1) TR+ §
M‘=[0 m.-l]

0 0}
where my, I, O and 1 denote the mass, the mertia matrix of
the ith link about its mass center, the zero and the identity 3x3
tmatrices, respectively.
8 prdimensional vectar of geternlized conrdinates, nol necessar-
ilv indepandent in general. where p'= a + m. n being the degree
of [reedom of the machine. Thus, n is equal to the number of
elements in the minimal set of generahized coordinates. Further-
more. in the absence of redundant actuation. » equals alvo the
winber of actipated joints, whereas m is the numher of dependent
cootdinates or suactualed joints.
t & we Bl-diniensional vectors of generalized teist and generalized
wreneh, respectively, e,

£
t

t = [ :“ > W
t

W L M: 61 x 6f miatrices of generalized angular velocityand gen-
cralized mass, vespectively. namely.

diag[M;. M. ... M|
diag'[W'-;. W—;. veen WJ]

Q w; x 1 (2)

W, = [ {3

Wy
Wy

wi

M
w

i

Now, il all vectors and matrices associated with the oth link
are pefeired 10 8 coordinale system fixed 1o the link, then the
Newton-Euler equations goviening the motion of this ik can be
wiitlen as

Mt =-WMt +w, i=Ll--1I 4

I
Therelure, il the machine under study comprises | tinks. 6F uncou-
pled Newton-Fuler equations are derived, These take the form

Mt = -WMt + w" 4 w? (5)
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;\!urh;t‘r‘r. W“ .‘Il?d W". an i'lr‘ ﬂ'nr‘k:uq Ml!l Tl:i' numr'mluliq =
eralized congleaing wivnehes tespipetively such thiat

Next, with the methodnlogy developed in the previons soctig,
the Rinematic constramts produesd by« holonomie aud o m
holonomic couplings can be written. from eq (1. as

At =10

th)

where A'ls a (69 +30) 6 matrix Uhar is tevmed Teve (e Lot matie
constrannl matriz. NMoreover. the vecton of genoralized bwist can
be represented as & lnear teansformation of veeton @, el

t="T8& (v
where T is a 6F % poorateix. Upon sobstitdtion of € ko oqd 6. we
abtain

AT =0

1T all the compononts of vectur 8 are iudep ndedit, jw. i 3 = »
anel m =10, then. from ey (8), the eelation shown below 1 peadily
obtained:

(N)

AT =0

where the 6/ = n matrix T is called the natueal octhogoan! com-
plemnent (Angeles and Lee; 1958) of A. By virtue of tlie definition
of A and the vector of nonworking coustraint wrenches, tie latter
turns out to liein the range of the transpose of A and henee. the
said wrench lies in the pullspace of the transpose of T, Thetefore.
upon multiplication of botl sides of the Gl-digmensional Newton
Euler unconpled equations of the systen. eq.(3). by the transpmse
of T, the vector of nonworking constramt wrenchis 15 eliminatod
{rom the said equation. Moreover. t is obtained by diffeventiating
e 7) as

it

t= Tﬁ +Té
Henee, then independent constrained dynaical equations of mo
tion are derived as

{1

1818 =C(0.918 + r it
where
Ie) = TYMT: » = n matrix of generalized wertia,
C{8.0) = =TH{WMT + MT): i = n matiis of
convective inerlia ferms,
T = TTw": p-dimensional vector of gl'urrailizmT'

external force arising from actuation. gravity
and dissipation effedts,

Note that, if the components of vector & are nol inddepesdeon .,
Le., ilm # D, the expression i eql9) caunol be obtaiued from
eqefB). and hence. matnx T, ag'in eq. (7). in the presence of e
pendent or wnaciyated jonis i ot the nataral arthogonal comple-
mentol A Toorder to use ths method for 1 e dvpamie malvsis ol
mechagisms with mnltiple Kinematic loops. matnix T is obtamed
as follows: an m" = poanantix J. thie Jacabian maltis. i oo
dueed. whose rowe are the o' independent fows of matris AT
thiese independenst constramt equations heing represented as

Ji=0 (12
Note that it isnot recommendod 1o compute mateix J fron e8]
In fact. it can be efficiently obtained using the independeat loop



equations of the whole kinematic chain (Gosselin, 1988), Now,
matrix J and the vector of generalized speeds 8 are partitioned in
such a way that eq.(12) can be expressed as

3,8+ Jp6p=0 (18)
where J; and Jp are m’ x n and m’ x m matrices, respectively,
whereas 8 and @p are n- and m-dimensional vectors of indepen-
dent and dependent generalized speeds, respectively. Moreover, if
the machine is controllable by its minimal set of actuated joints,
then Jp is of full rank and, in fact, it is a square matrix. i.e.,
m" = m, Hence, dependent joint rates can be evaluated from
eq.[13) as

8p =-35'3,8, (14)
Furthermove, the generalized twist vector can be written as
V= T-;é'; + Tpép (15)

where T and Tp are 61 x 0 and 6/ x m matrices, respectively.
UTpon substitution of eq.[14) into eq.(15) we obtain an expression
for t as a linear transformation of 8;, namely,

t=(T;—=Tol5 310,

Since, vector 8 is defined as the vector of independent generalized
speeds, the natiural orthogonal complement matrix in the presence
of unactuated joints is defined as

T.=TF; = Todp'J (16)
Then, matrix T, needed in eq.(10), is obtaitied as
T =T Tpdg' i + Todp3pdp' 3 - Tod5'd,  (17T)

It is evident from eqs.(16) and (17) that matrices T and T are
given by cumbersome expressions. For multi-kinematic-loop sys-
tems, an efficient method of calculating both T and T numerically
is reported in Salia and Angeles (1991). Knowing matrices T and
T. the equations of motion for closed-loop mechanical systems are
veadily devived from eq.(11).

4 Dynamics of Planar Mechanisms

In this section the kinematic constraints and the equations of mo-
tion of several one-degres-of-freedom planar mechanisms are de-
rived using the method presented in the previous sections. These
nechanisms ate chosen due to their significant importance and
widespread applicability in industrial machivery. Note that, for
the analysis of planar mechanisms, the fwist t, and the wrench
w, of the ith hody. moving in a plane, are redefined as three-
dimensional vectors, Moreover, the extended mass mateix M, iy
redefiued as a 3 x 3 matrix, They are given below:

i=(3] mefg] e ss[f 2]

where 2, n; and [, are the scalar angular velocity of theith link,
applied scalar torgue acting on the ith link and the—polar—mass
moment of inertia of the ith link aliout its mass center, respec-
tivelv, All these quantities are defined about an axis orthogonal
to the plane of motion. Vectars & and f; are redefined as the two-
dimensional vectors representing the velocity of the mass renter

(13)
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Fig. 1

A four-bar linkage

and the resultant force acting at the mass centerof the 1t link, -
spectively. Moreover. O and 1 are now the 2 < 2 zero and identity
matrices. respectively. Note that, in a plane. constraint torques
and forces exerted by the ith Tink on the jth Gk through the (1. )
coupling will be denoted by a scalar n,, and a tivo-difensional v
tar £, respectively. Moreover, fiouy the Thivd Law of Newton. 1,
and f;, are equal to —u;; and =f;. respectively.

4.1 A Four-Bar Linkage

A planar linkage consisting of four vigid links coupled by tevolute
joints. as shown in Fig. [, is among the simplest. ver the muost
important mechanisms. To derive the kinematic constraints of a
four-bar linkage, note that the angular velocities are parallel ta
vector k. as indicated in Fig. 1, and hence. constraimt equations
on angular velocities of the coypled bodies vanish identically. the
constraint equations on mass-center velocities heing derived as

€ =€ +wiEbi_; + 4 Er, (1)

where ¢,_y and ¢, denote the velocity of the mass center of the
{r — )5t and the ith links. respectively. Therefore, the 2 x 4
matrices Aiy -y and Aoy ; for a revolute joint are

A1 =[=Eby -1]. Ay =[-Ern 1] {20)

whete b, = a; — . for o = 0. 1.2.4. Using eq.(20). the kinematic
constraint matix. introduced in eq.(f). is decived as

-Enp 1 0 (0] 0 8]

o B0 T T (R
0 (6] -Eb; =1 —Er-, 1 v
0 O 0 0O -Eby -1

whete A is an 3 = 9 matrix. O was alreads inteoduced iy g 18]
and 0 is thie 2-dimensional zero vector.

Now, [ronuthe free-body diagram of the yth link, shown i Fig. 1.
the Newton-Euler equations of the ith link moving in a plane are
given as

oy + r:rErl—l-a + (al == ré:'TErl.tél = !.w‘.
fa H l',_[_, = lss1 = "'iei
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(23)

where + = 1,2,3. Moreover. the scalar n, and the veetor £. in-
cluded in Fig. 3(a). denote. respectively. the scalar motent wue
the 2-dimensional vector of applied foree acting at 1he mass con-
ter of the link, €, Moreover. Eis a 2 » 2 orthogonal mateie that
tates 2-dimensional vectors clockwise trough an augle of M.
[t is defined as

e =
e=i %



ti © by

and hence, ET = —E and ETE = EE” = 1. As a consequence,
then. B! = —1. Whriting eqsi(22) and (23) for 1 = 1,23, an
equation similar to eq.(3) is obtained, which is expressed as

Mt = w" +Bf° {24}
whete the tecrin WMe of eq.(5) does not come into the picture.
Furthermore, the § x 8 matrix of extended mass M is given by

M = diag(M,, M,, M) (25)

where vector t; and mattix M, for ¢ = 1,23, are defined in

eq.(13), while the 9 x 8 matrix B is given below:

E bIE o7 o

1 -1 0 o

of rJE BJE 0 B
B=los 1 =10 (26)

07 0" rlE blE

o o0 1 =1

where vector by, for1 =123, is i_nl.roduced in eq.(20). Moreaver.

the 9-dimensional vector w" and the 8-dimensional veclor i€ are

= [(wi)7. (wi ), (w3 )T]" and £€ = (@ 5 T Sl"

(27)

where w'¥' = [m, 7|7, for i 2.3. Note that, matrix B

in £q.{26) is identical to the transpose of matrix A, as given in

eq.{21), which shows, as pointed out in Section 3, that the non-

workmg constraint wiench Bf€, as in eq.(24), lies in the range of

the transpose of A.

Now, the twists of the individual links are obtained as

1

= T

: (28)
ﬁ") m —
Smu' a four-bar linkage is a one-degree-of- -freedom mechanical sys-
tem. in order to find the generalized twist as a linear transforma-
tion of the independent joint rate i, joint rates @ and ¢ have to
be evaluated in terms of 4. This is done below: From Fig. 1.

ay+aytag+ap=>0 (29)
Upon differentiation of eq.(29) with respect to time, a relation,
similar to eq.(13). is obtained as

hi+Jpfp =0 (30)

where the 2-dimensional vector h and the 2 x 2 matrix, Jp are

given as
h=-Ea,;. Jp= [Ea;. E!g]

and 8p = [, ©|7. Moreover, for nonparallel vectors a; and as,
Jp is nonsingular. Henee, & and ¢ are obtained from eq.(30]) as
§=rath,  6=ret (31)
where rg and r, are evaluated as [rs, 74)]7 = =J5'h. Furthermore,
the four-har linkage is in a singulay configuration when matrix Jp
is singular. i.e., ay and as are parallel, that is, at the dead points
of the output link.
Knowing # and ¢, the 9-ditnensional generalized twist can be
expressed as )
t=ud
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Fig. 2 A slider-crank mechamsm
where the natuwral orthogonal complement of matrix A, as given in
e 21).is now vector u displayed helow:
-tTE.
Now, usiug eq.{30). it can be readily seen that

Au =0

u=[l, 1a. —-(ag-t-rpr;}rl']. - r'-.b.TEi'r

The generalized inertia and convective inertia terms. detioted
by scalars I and C, respectively, [or a lour-bar linkage. aie given
as

I = I+ ril+ril+mindl* + mlla + el
+myri||bsl)* (42)
C = —ifrarsily+ mallesl?) + marsal vy
+myre(re = 1)a] Bry + rorilUs + mgl[bs|*)] - 139)

where [|-|| denotes the Euclidean norm of & vector (1) whereas {-)f
is d(-)fdi. Furthermore. if the mechanism is assumed to lie ina
vertical plane, then the gravity acceleration, denoted by vector g,
acts along =j. while a driving forque ry is assumetd 1o be applied

on link 1. Therefore, the scalar external generalized torgue. ©is .

given as

r=r1 — g Elmyr, + myla 4+ rery) —maroby] 477 (34)

where torque 2 arises from the dissipation effects in the system.
Finally, the equation of motion of a four-bar linkage is obtained
as - -
le=Cu4r1 [555)
where [, €' and 7 are evaluated form eqgs.(32), (33) and (F40

vespectively.

4.2 A Slider-Crank Mechanism

A slidericrank mechanismyis shown in Fig. 2
straints between links 0 and 1. 1 and 2. and 2 and 3 can be readiiy
derived using eq.(19). To derive constraints between the slider aud
the fixed hase, links 3 atnd 0. respectively. it is noted that link 3
has only translational motion along vector i Thus, tlils consteaint
can be expressed as

TIlr kinematic cou-

wy=0 and jTée;=0 (3

Comhbining eq (361 with other constraints and weitip them o the
form of eq.(6). the 8 x 9 matiix A is obtained as showin helow:

-Er; 1 0 o] 0 (0]
-Eb; -1 -Er; 1 0 (0]
A= 0 0 —Ebg =1 =En 1 {47
0 of 0 [ L 0
o o o o o —j



J
fa) (L)
. -1
_Mg— /
N o
X ~ g

| 1 [ )
N
'T. £
Fig. 3 Free-bio B s of (a) a link 1) a shids
ere 1 1 1n Subsection 4.1. The free-bods
g, 3(h). Note that, in order t
or the offset of the paint of application ‘Lios
fi i wt link 0 exerts on | | toy
' . U a3 From Fig. 3(B), the Newtor
# re w
ny+ryEfis —ng = 0 (38)
fa+Ty—Ffuw = macy (39)
'sing egs.{22) and (23) for | and 2, a-set of dynamics equa

tions i the form of eq.(24) s obtained where, for the slider-erank
1echan the § x O extended mass matrix M defined in
f 23 x M., for¢ = 1. i5 delined in eq.(18) and M
My=[2 O]
=G gl =
M wer, vector w 1% defined as in eq 29 the Y ~
matiix B g given as
[rfE bTE 07 i i
1 1 O 0 0o
p" ofE BTE 0 0
B = < = . xl)
0 1 1 D 0 I
0" 07 B L 0
o o 1 o0 -j
| le [
< = AR USSR
vhere Also note that, upon comparison of eqs.{37)
bl again. Furthermore, the twist of links | and 2
e given in eq.(28), whereas the twist of link 3 is
=10, =
N tependent va 2 oaud 3 ate obtained from 1:-! 2
g eq.(29).. Upon differentiation of eq.(29) with respect 1o
tune, an expression similar o eq.(30) is derive vhiere the 2
I ) ector h aud the 2 x 2 non-singular matrix Jp dre
h = -Ea, Jo = [Ea;, —il {42)

Then, @ and 3 are obtained, similar to

gt and v, respectively. The 9-dimensional natural

al complement of A, as given in eq.(37). is now obtained

- - T ST T
u =l —r{f'_\ =&y +arz} E, 0. ra')’
which satisfies Au=10
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1
g n,
.
. . > \
Fay M
/ \
b \r,
= T \
Fig. 4 A cam wit flat-Tace follows ) el
E 1 ML A ~ [ X
;:.-- ;'r".'."l"||'i.-'r'1': e | reLIve LTt giates il lze
LG n the presence ravityv. dissipabion ahd e el A fapalte
for 2., a compressive force iy the cvlind Hoan internal
combustion engine—applied on Lhe dlider. as show Fig 2. a1
gIVen a
= N+ oniiell® + vil + mgllay + varalP + 14
= [fyrary 4 ay + ryry) ey 4 a Er
e r,
I ]
T = =g BEloyry +myla, + rery) 47
viler 2 t Hissipatios Sl
tion ol on of a | rauk mechanisne a e
maplete, J, € snd r being obtaiued o i) |

15), respectively

A Flat-Face Follower Cam

the velocity of the mass center of the [ollows
=] [ey+ o Eb; + . Er

Vector by lefined. asin Subsectiony 1.1
. r= a; and ry are shown in Fig, |

Al ih the G = A fal i

0

0 -]

o7 0

L ]

diagrams of

Hb). the Newton-Euler

*written as

1t the free-bods

ny l'.'l Efy; + |J!‘E|’,_- —

("Ers)j 1
the coum and the

Tty [

\ cam mechanism w face Tollower 15 <l n Fiz. d{a
( straint equations due to a revolute and a p Lic pait 1
t thsections 4.1 and 4.2, Here. co Hween |
ane tl al-Tace | ver a lerived 1o oltain 1 Sty
ations of the svsi f stinely Ni vt o
£. 4la), the velocity of the ronta L pannt ), vega ) il
1= cam. has a component paraliel to 1 nnel a onent parallel v
I labeled §' and ", as shown in Fig. Ha). respectivel. Thepefore

eguations for the cam and e



na+ fTEf; = 0 (50

f; = |"|pi - I‘-,_ = mMat;

wre [y = i1, Note tliat the constramt lorce fj2 acis along

is the conjponent of the farie A exerted by the cam on the

Ml

O

Vertor A cian be mterpreted as the vector of Lagrauge

Now, the constraint lorce fl_- can be written as

f-_;:fljla\Ij (52)

Vioreovey, ws porplech oul 1n the pPrevions snbsection. ue 1o the

if=er of vhe powt ol application ol lorce fos. a fofce fo: acting

ont 1he mass center of the follower and a couple ngy acting on the

follower, as shown in Fig. 4(b), are jncluded, Upon substitution ol

A52) into eqs.{48) to (51), the governing equation in the form of

eq.(24) can be writtey fol the mechanism, where the 6 x 6 matrix
M ix defined similar to eq.(25), but the definitions of M, and M;
are given i eqs(18) and (40), rospr‘.r':.h.'i?l_‘-.' Moreover, the 6 2 6

matrix Band the 6-dimensional vector I are given below

{ t'E (BTEj)T 0 0 fos

1 -1’ U = A tea
of rlET -1 0 T

L o i 0 -i

- -
]

“illJ

m which it is clear that. again, B=AT, The tiwist t of the cam
abtained from eq (28), whereas the twist of the [ollower, t;. 1s

i.;. \\'l|r'lll.‘

given hy [ 5i7

i =({"Bay)¢

the natural orthogonil complement reduces lo a
senstonal vector u that is given as
— e (T TIT
=l =B, 0 —(ayEj}"|
Moveover, with a driving motor torque 7 on the cam and an

psternal foree £, actiug on the follower. as shown in Fig. 4(!
e pouation of motion of this mechanism can be ohtamed, as

v (33}, with [ C aid m given helow

+ oy |Ja|[* 4 maliag )

—
il

oyl = myli’ ay)(j" agl]
* " g ' o D
r = n+mr Bg—(iTa)imali’g) + S+

L )
Furthermore, vectot g and scala: r? denote

hewe [, = =j'f,

the grivity acceleration and the dissipation Lorque, respectively

4.4 A Roller-Follower Cam Mechanism

Referfing to Fig. 5. the constraint equation due to the rolling
contact between the cam and the roller-follower is written in the

farm of eq.(19), which. when combined with other constraints

viedils the 8 <9 matris A shown below

i=Er; 1 0 (o] 0 0
—Eb; =1 =Er; 1 0 0

A = ‘ 0 O 0 ;|
{ 0 i i OT =} o'
] 0 0 i} 0 —1

A cam with a voller follower.

g, 5

uler equations for the cam and the roller car

T'he Newton-E
written as in eqs.(22) and (23), whereas the dynamics equations

1k 3. can bhe obtained as in the previous sub

for the follower.

el jon This ,"--‘.|!?<- in a st ol eauations of notion ol Tl e

shown in eq.{241. The O-dimensional vectors of generalized 1vast t
and of genery ized workmg wreny how' as well as e o= il
of generalized mass, ape as defined jor the <tieler-crank et lia

Phe 9 x 8 mateix B and the 3-chmensional vecton f' are given as

i

]

r‘E h.:E. 0° 1] 07 L

1 -1 O 0 0°
07 fE 07 0 n\ : ¢
B=|o % -1 o of ™ = |
o o
o 0 1

whetre g arises due 1o the offser of 1w popnl ol applicat
force fyy. Moreover, fq 18 the componrent ol {he force Ly along

—1. Note that, as pres jous caxes. A = B

For the rollec-lollower eauy mechanism the aneular cate ol
I [y e

rolling rontarct

roller B and the sliding rate s ate dependent vatiables

compited from the constraints avisiug lrom the
hotween the cam aud the voller, which ean e expressed as

ij 4 0Er; = Ea

Now. the natural ort hogonal complement 1s @ tlanensionat |

tor u. namely;
—¢{E. —rs P 0. md

Th"]'f'{-_\ll" f'_ " and v lo e dvniamiceal .-.!.:,|r|||||‘ ol thies i lea-

HiSNL dFe ZIVen as
i led [ 4 Larg 4 (g
= --"|‘f_-';.""_1 4 (g + my )y
T 7 -
ry 4+ Bg = ral(nee o) g) + L+ 7

'-'.'ho‘l'r‘ Ty IS ll';.\ "my In:['-.|||\‘ AcTimg on f't_-- faamn .||1|L ;J, in the conipe
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5 A Bevel Gear Train
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6 Conclusions
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ose of the kinematic constraint matrix A. Contrary Lo s
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ined 1o designing machine elen

of non-working c
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duality between kinematic constraints and non-s orking ce

gl

wirenc hf‘i- was [ !‘ Vv el

7 Acknowledgements

under NSER( { Nat-
. af Canada) Re-
No. EQPO0-

Partial support from the Institute for Robatics an

ite researcil work reported here

wral Sciences and Engineering Researc

arcl Crant No. Ad532 and Equip

eller

tolligent Svstems. a network of Canadian centres of e

acknowledged. The scholarship granted to Subir Kumar

¢ acknowied

the Government of lndia 1s eq

8 References

.\--'_'_I'lr"\_ T anel Lee, oA .l.".\‘.';.

wquatione of I
thogonal rompiement
heeesVol. 35, March. pp

bes. .. and Ma, O.. 1988, simulation of

sofial robotic manipulators using a nalural orthogonal oo

= The Int 1. of Robotios Research. Yol. 7, No.5, PP

X Angeles. J. and Misra, A.K., 1989, “Flexible-litk rebotic

anipulator dyn es Proc. 1989 American Control Confer-

ence. Pittshurgis. lune 2123, pp 2346

jons—A New Approach,” Trans: of the ASME, J. of Ap-

whied Meehanies. Vol. 41, D

R.L.. and Passerello, C.E., 1974, “On Constrain

ember, pp. 1130-1131

Ciosselin, ( 1988, I\ ;

miag of parel robotie manipulators,

Mech. Eng.. McGill Hniversity, Canada

Kane, T.R., and Wang, C.F., 1965, “On the derivation of equa-

tions of motion.” J. Sec. Tnifnst :“_Ull].'l ‘Math.. Vol. 13, No. 2.

pp. 487442
Meiroviteh, L.. 1970, Methods of Analyheal

Hill. New York

Saha. S.I0. and Angeles. J.. 1991 “Dynamics of nonholonomic me

hogonal compleme

a natural o -
58, March, pp. 235

chanical systems usi
af the ASME of Applied Mechanies,
243

Vol

wemalic nnalysis. optvmizalion and program-
Ph.D. Thesis, Dept. of

ramics, McGraw-

SRLA. O

1 .
SR Ll Ll €

Lulomniin

122




