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ABSTRACT
Ever since the inception of Robotics, it has served as a great col-
laborative platform for researchers from the fields of mechanical
engineering, electrical engineering, and computer science. Robot
Operating System (ROS), one of the biggest middleware frame-
work for robotics has lead to high paced research and development
around the globe. In this paper, we present our work on developing
a low-cost ROS enabled education platform for Indian research
institutes. This paper begins with our learning of ROS using KUKA
youBot and later goes on to discuss in detail the development of the
indigenous platform: RoboMuse 4.0 and its integration with ROS.
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1 INTRODUCTION
Robotics has always been amajor source of attraction for researchers
and academics around the globe. Starting from Shakey [1] to PR2
[2], it has always been an interdisciplinary field. With the enhance-
ment of various perception and communication technologies, it
became an increasingly difficult task for a single developer to work
on all the mechanical, electrical and computational aspects of a
robot. ROS changed it all with its creation in 2007. It became ex-
tremely easy for developers to work and focus on a particular aspect
and integrate their work with others. This open source platform
provided the much-needed interface to enable data sharing and
allowed researchers to build upon each other’s work rather than
going about reinventing the wheel. More importantly, ROS pro-
vided a simple way to integrate multiple packages and a state of the
art communication system between those packages. Many robot-
ics companies have developed several ROS enabled platforms like
Turtlebot 2, youBot, PR2, Baxter, Husky, etc. Turtlebot 2 became
one of the major robotics educational platforms around the world
[3]. Owing to its low cost and sensor modularity, Turtlebot 2 helped
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researchers to develop and test several new ideas and concepts
in a short period of time. The open source nature of ROS made it
extremely easy for students from various departments to operate
and learn Turtlebot [4]. Over the years, Turtlebot has been used as
an educational platform in undergraduate and graduate courses to
develop hands on working skills in students [5, 6].

In contrast to the west, ROS in India has not been widely adopted.
The prime reason is the lack of an indigenous ROS compatible
platform. The high cost of such platforms has restricted majority
of Indian Universities to enjoy the vast benefits of ROS.

IIT Delhi has its own indigenous mobile robot series RoboMuse.
RoboMuse 1 started as a line following mobile robot capable of
moving from point to point with automatic charging. It was adopted
from one of the robots built for of Robocon 2008 by the IIT Delhi
team. The next iteration, RoboMuse 2 focused on improving the
reliability and robustness of the same task by incorporating, white
wooden straps for line following instead of plastic tapes which were
getting damaged frequently. It was also endowed with improved
circuitry for better charging. RoboMuse 3 was the same technology
but with the task of picking up a plastic bottle and dumping it in
a basket located at a distance. Functional videos of all the three
versions are available on YouTube[7][8][9].

In RoboMuse 4.0 (Fig. 1), we aim to provide the same research
capabilities as that of other commercial platforms but at a much
cheaper price in India. RoboMuse 4.0 allows students to get started
in robotics and provides researchers with a tool to expand on ROS’s
state of the art features and in-numerous packages, some of which
have been discussed in the following sections.

This paper is structured as follows: Section 2 gives a gentle intro-
duction to ROS and the hardware setup used. Section 3 describes the
implementation of autonomous navigation using ROS packages. In
section 4, we talk about the development of RoboMuse 4.0. Section
5 describes the process of setting up ROS on RoboMuse 4.0. Finally,
Section 6 presents our conclusions.

2 ROBOT OPERATING SYSTEM (ROS)
ROS is an environment that facilitates the development of robotic
applications. It includes libraries and tools which provide hardware
abstraction, device drivers, visualizers, loggers, etc. Programs are
built as ROS nodes, which connect to a single ROS master. Every
node connected to this master can listen to the messages provided
by other nodes by simply subscribing to the corresponding topics
[10]. In addition to messages, parameters and services can also be
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Figure 1: Robomuse 4.0

made available for all the nodes connected to the master. ROS is
widely used in programming educational/research robots in ad-
dition to many industrial robots. Owing to its open source and
modular platform, packages are continuously being developed in
ROS for a number of different platforms.

Since most of the packages for various functions had already
been developed, our primary task was only to understand how
these packages function and change them according to our needs
and hardware.

2.1 KUKA youBot on ROS
The KUKA youBot is an educational robot that has been specifically
designed for research and development in mobile manipulation. It
consists of an omnidirectional mobile platform, a five DoF robot
arm, and a two-finger gripper. KUKA provides a ROS wrapper for
youBot. Using this, robot’s state configuration, i.e., odometry, joint
angles, gripper position, etc. becomes available in ROS topics. Also,
youBot’s base and arm can be moved by publishing appropriate
messages on the topics subscribed by youBot driver node [11].

2.2 Microsoft Kinect
Kinect is a motion-sensing camera by Microsoft which provides
RGB and depth data of the environment. Though capable of working
only in the closed environment, it is one of the most widely used
sensor for indoor environment mapping. Kinect was used for 3D
SLAM and later for object recognition. The technical specifications
of Kinect have been mentioned in Table 1.

Table 1: Technical Specifications of Kinect v1

Resolution 640x480
Frame Rate 30 fps
Horizontal FOV 57o
Vertical FOV 43o
Minimum Range ≈ 0.5m

Kinect generates depth data by analyzing the distortion of a
known pattern, a technique called structured light. According to

this, a speckle pattern of IR laser light is projected onto the scene
and depth data is inferred from the deformation of this pattern [12].

2.3 ROS on Kinect
In order to interface Kinect through ROS, we used the OpenNI
package. This package contains the necessary drivers required to
convert raw RGB/IR streams from OpenNI compliant devices into
depth registered point clouds. This enabled us to access the depth
data through ROS topics.

2.4 Simulation in ROS
ROS provides an integrated infrastructure for robot simulation. Ro-
bot model along with the attached sensors can be easily integrated
with gazebo simulator in ROS to generate a communication thread
between the user and simulator analogous to the one between a real
robot and user. Since the simulator mimics the exact same messages
generated by our hardware it has an added advantage of developing
packages without having the real platform. Each package which we
will talk about was first tested on the simulator for the safety of the
robot and only after obtaining expected results from the simulation
were the packages transferred on to the actual hardware.

3 AUTONOMOUS NAVIGATION USING ROS
3.1 Obstacle Avoidance
Before we discuss obstacle avoidance, it is necessary that we intro-
duce some terminologies:

Footprint: The footprint of the robot is the circle which circum-
scribes it. Kinect provides depth values only greater than 500 mm.
So, to ensure that no obstacle comes within this range, the footprint
had to be inflated by some fixed value.

Costmap: Costmap is a 2D map of the environment which con-
tains information of the obstacles in the form of an occupancy grid.
Each point in the map has a ‘cost‘ value assigned to it.

Figure 2: Local Costmap

• Yellow areas in the map represent the obstacles. These are
assigned a cost of 254.

• Blue areas represent the obstacles inflated by the radius of
the robot. These regions are assigned a cost of 253.

• Gray areas represent free space and are assigned a cost of 0.
• Red/Pink areas have a cost between 0 and 253.
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The costmap is further divided into two categories:
Local Costmap: The local costmap (Fig. 2) is the costmap of the

environment which is currently in view of the robot. This is the
map which is used by the robot for obstacle avoidance.

Global Costmap: The global costmap is generated by combining
successive local costmaps along with localisation information. It
contains the ’cost’ information of the whole map. This map is used
for path planning.

For the purpose of obstacle avoidance, the ’nav2d’ package was
used. This package requires a 2D laser scanner data for generating
the costmaps [13]. This data was emulated using Kinect as a real
laser scanner was an expensive option. Obstacle avoidance was
achieved on the robot by moving in a path which minimizes the
value of the cost, while still maintaining the direction as much as
possible. The robot continues to move on its path until it enters a
region with a non-zero cost (red areas). Once it is inside a red area,
the robot moves in the direction in which the cost decreases while
the deviation from the path is minimum. For the robot to avoid a
collision, its footprint should never intersect with an obstacle and
thus, the center of the robot should never enter the blue region.
Further, the nav2d package enables you to maneuver safely by the
use of parameters like inflation radius which is the distance around
the robot in which the cost function is applied, thereby the robot
tries to avoid any path falling within this region.

3.2 Simultaneous Localization and Mapping
Simultaneous Localisation and Mapping (SLAM) is the process of
constructing a map of an unknown environment while simulta-
neously keeping track of the robot’s location within it. This is a
convoluted problem since in order to solve one we need to know
the solution to the other. There are several algorithms which can
be used to reach an approximate solution like the particle filter
and the extended Kalman filter. A key feature in SLAM is detecting
previously visited areas to reduce map errors, a process known as
loop closure detection [14].

3.2.1 Real Time Appearance-Based Mapping. The ’rtabmap_ros’
package is a ROS wrapper of RTAB-Map (Real-Time Appearance-
Based Mapping), an RGB-D SLAM approach based on a global loop
closure detector with real-time constraints [15]. This package can
be used to generate an RGB-D map of the environment (Fig. 3) and
projecting it to create a 2D occupancy grid map for navigation [16].

3.2.2 Loop Closure. Loop-closure detection is associated with
the problem of detecting when the robot has returned to a past loca-
tion after having discovered new terrain for a while. This detection
increases the accuracy of the robot pose estimate. RTAB-Map uses
a bag-of-words approach to determine whether the current view
corresponds to a previously visited location or a new one [17].

3.3 Object Recognition
Object recognition was achieved using the ’find_object_2d’ package
for ROS. This package is an interface to OpenCV implementations of
SIFT, SURF, FAST, BRIEF and other feature detectors and descriptors
for objects recognition. We begin with a sample of images of the
object to be located. The task of object recognition can then be
divided into the following steps:

Figure 3: 3D Map Reconstruction showing path of the robot

Feature Detection: In this step, abstractions of image informa-
tion are computed. We choose local points in the image that have
an interesting/distinguishing property and these are called features
(Fig. 4). In the work presented, these points are identified using the
Features from Accelerated Segment Test (FAST) algorithm.

(a) Known Object (b) Detected Features

Figure 4: Feature Detection using FAST

Feature Description: Once the interesting points in the image
were identified, a local image patch around the feature was ex-
tracted. The result is known as a feature descriptor. In the work
presented in this paper, the Binary Robust Independent Elementary
Features (BRIEF) algorithm was used. BRIEF is based on compar-
isons. From a patch of interesting points, we chose two points and
compared the intensities of those two points. If the first point was
larger than the second point, we assign the value ’1’, else ’0’. This
was done for a number of pairs and we ended up with a string of
boolean values. This process is repeated for each feature point.

Feature Matching: Once we have the feature descriptors of the
objects to be identified, we tried to match these with those feature
descriptors of the current image frame from the Kinect camera.

After the object has been identified in an image frame, its rela-
tive pose was estimated using the depth data of the pixels of the
object in that frame [18]. This was combined with the localisation
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information from the SLAM approach to get an approximation of
the pose of the object in the map.

3.4 Motion Planning
Once the pose of the object was identified in the map, the final
step was to move the robot to that position. The ‘move_base‘ pack-
age was used to accomplish this task. This package contains the
move_base node which links together a global and a local planner to
accomplish the navigation task. This node maintains two costmaps,
a global costmap for the global planner, and a local costmap for the
local planner. This node also provides a motion controller which
acts as an interface between the path planner and the robot. Using
a given map, the global planner creates a kinematic trajectory for
the robot to get from a start pose to a final goal pose. Along the
way, the local planner creates, around the robot, a value function
represented as a grid map. This value function encodes the costs
of traversing through the grid cells. The job of the controller is to
use this value function to determine the differential velocities: dx ,
dy and dθ to send to the robot. ROS enables the attachment of the
global and local planners as plugins, thereby enabling easy modifi-
cation and implementation. Currently, the Dijkstra’s algorithm is
used to create the global plan while a Trajectory Roll Out Approach
is used to create the local plan.

3.5 Integrating the ROS packages
Each of the different packages acted as a subsystem having distinct
sets of inputs and outputs (Fig. 5). Thus, it was essential to integrate
these subsystems appropriately to establish a single robust system
having the required functionality.

Figure 5: Subsystem Block Diagram

The SLAM subsystem (rtabmap) requires odometry from En-
coders and RGB-D data from the Kinect as inputs. It generates both
a 2D gridmap and 3D reconstructed map of the environment, along
with the robot’s pose as its output.

The Object Recognition subsystem (find_object_2d), requires the
image of the object to be recognised along with real-time visual
data from Kinect as inputs. It adds the pose of the object to the
tf_tree if and when the object is identified in the current frame.

For the Motion Planning (move_base) subsystem, we require the
environment map along with the goal coordinates as inputs. The
job of this node is to provide a local and global motion plan along
with publishing velocity commands as outputs. This enables the

robot to move towards its goal while traversing around obstacles.

Finally, a ROS node (final_node) was written which acted as a
master communicating with nav2d_operator, move_base, tf_tree,
etc. to run the robot. The logic of this node is given in Fig. 6.

Figure 6: Algorithm of final_node

The final_node continuously looks for the object in the tf_tree. If
the object is found, then the desired robot pose in front of the object
is obtained using rigid body transformations, and a navigation goal
is published to ’move_base’. If object is not found, exploration is
continued by providing appropriate command to ’nav2d_operator’.

4 DEVELOPMENT OF ROBOMUSE 4.0
4.1 Mechanical Design
The development of RoboMuse 4.0 can be broadly classified into
three categories: mechanical, electrical and programming aspects.
The mechanical part included the design, analysis and subsequent
fabrication of the robot. The electrical part consisted of designing
the circuits, controlling motors, interfacing different sensors, etc.
Finally, the programming aspect was the development and inte-
gration of different ROS packages, setting up the micro-controller,
programming the logic, etc.

4.1.1 Chassis. The base of the robot (Fig. 7) was designed based
on the dimensional constraints of the actuators (motors) and the
tasks to be performed by the robot.

Figure 7: CAD model of RoboMuse 4 chassis
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4.1.2 Drive. The drive assembly includes the motor, gear box,
helical coupler, bearings, shaft, keys, wheel and encoder, as shown
in Fig. 8. The gearbox is attached to the motor at one end and a shaft
at the other end. The shaft of the motor is connected to the shaft of
the wheel by means of a flexible helical coupler. The helical coupler
provides flexibility to handle deflections of the shaft in addition to
transmitting power efficiently. The shaft of the wheel is supported
by a set of bearings at both ends. The wheel is attached to the
shaft with the help of a key to prevent slippage while transmitting
motion. A pair of retaining rings were used to prevent the axial
motion of the wheel over the shaft [19].

Figure 8: Exploded view of drive

4.1.3 Rack. The main purpose of a rack was to equip the elec-
trical components in two levels at the bottom along with a laptop
at the top shelf. It was designed to be easily removable from the
chassis. It consists of four aluminium channels at the four corners
and acrylic sheets as the shelves. The height of the rack was such
that a laptop can be placed on it which is easily accessible by a
person of height 180 cm. Acrylic sheet of thickness 5mm was used
for the different shelves of the rack. These can be adjusted to any
height within the limits of the aluminium channels.

4.2 Electronics
Emphasis was laid on making programming and debugging conve-
nient for the robot users. Hence, we tried to incorporate only widely
used open-source platforms. A brief description of the electrical
sub-systems used is given below:

4.2.1 Power Supply. The robot is powered by two 12V 7.2Ah
lead-acid batteries. One battery is used for driving the motors while
the other to power the Kinect through a DC-DC Buck converter.
The converter ensures that the Kinect input voltage stays exactly
12V even when the battery voltage is above 12.5V.

4.2.2 Micro-Controller. The core of the circuit is an Arduino
ATmega2560 microcontroller operating at 5V from the laptop. It
consists of 54 I/O pins including 6 external interrupts. The two
Encoders are connected to four of these interrupts.

4.2.3 Encoders. CUI AMT11 Incremental Quadrature Encoders
having resolution of 2048 PPR were mounted on the shafts of each
wheel for odometry calculation.

4.2.4 Motor Driver. Motor speed control was achieved using
PWM signals generated by the Sabertooth 2x32 dual-motor driver.
It has a continuous current carrying capacity of 32A for both motors
which was more than enough for our use. UART protocol was used
to communicate between the Sabertooth and Arduino.

In addition to the above, an emergency-stop switch was also
mounted on the top shelf for safety considerations.

4.3 Cost Analysis

Table 2: Bill of Materials

Part Price(Rs.)
Body Manufacturing + Material 20,000/-

BaneBot Motors 12,000/-
Microsoft Kinect 5,000/-
Arduino Board 2,000/-

Sabertooth Motor Driver 9,000/-
CUI AMT Encoders 3,200/-

Batteries 1,500/-
PCB and misc. electronics 1,200/-

Total 54,200/-

Table 2 contains the cost of different components and the ex-
penses occurred in realizing the robot. Turtlebot 2 with a laptop
costs $2115 [20], which is nearly Rs. 1,40,000/- without customs and
shipping. A similar setup for RoboMuse 4.0 would cost less than Rs.
90,000/- (including Rs. 35,000/- laptop).

It must be noted that this robot was made with expensive com-
ponents which can be replaced with cheaper ones without affecting
the functionality of the robot. For example, the size of the robot is
excessively large, a smaller robot could be manufactured in under
Rs. 12,000/-. Also, one could use cheaper motors, motor driver and
encoders potentially reducing the cost of the complete robot down
to Rs. 30,000/- from the current Rs. 54,000/-.

5 SETTING UP ROS ON ROBOMUSE 4.0
The packages required for autonomous robot navigation were first
setup on KUKA youBot. Once we understood the working of these
packages, the next step was to set up RoboMuse in ROS. This meant
modeling the robot in ROS compatible format and developing dri-
vers to interface with the robot hardware. After this was accom-
plished. the navigation packages were shifted to RoboMuse with
minimal changes. The only parameters that had to be changed were
dimensional specifications which are used for obstacle avoidance
and kinematic specifications used for motion planning.

5.1 Robot Modeling in ROS
ROS uses Unified Robot Description Format (URDF) representation
of robot for simulation and visualization in Gazebo/RViz. This URDF
makes the robot aware of its own links and how they react with
the motion of the robot. After going through the tutorials on ROS
Wiki, an accurate URDF model of the robot was created.

Unified Robot Description Format. URDF file contains a number
of XML specifications for robot model, sensors, etc. It also stores
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Figure 9: URDF Model of Robomuse 4.0 in Gazebo ROS

kinematic and dynamic properties of the links/joints in addition to
simulation properties like friction, inertia, collision geometry, etc
[21]. RoboMuse URDF model in Gazebo is shown in Fig. 9.

Transforms. ROS uses the concept of a transform tree for storing
physical information. This is essentially a graph having links as
nodes and joints as edges. The transform from one link to another
can be easily computed by traversing this graph and successively
multiplying the transforms that one goes through. The transform
tree is published on the /tf topic through the ’tf’ package. This
package contains a node called ’robot_state_publisher’ which takes
joint positions as input and keeps updating the transform tree [22].

5.2 Driver
Driver is the low-level piece of code which interfaces the software
with the robot hardware. RoboMuse driver had two primary tasks.
First, it had to listen to the velocity commands provided by the ROS
packages and ensure that the robot moves with the desired velocity.
Second, it had to provide robot odometry using data from encoders.

Hardware. Following is the overall architecture of the robot:
Encoder data (robot)→ Arduino→ Data processing from Laptop
→ Velocity Command→ Arduino → Sabertooth Motor Driver.
Two independent PID loops were implemented on Arduino to con-
trol the speed of each wheel.

Interfacing. ROS provides a package ’rosserial’ for interfacing
different micro-controllers (MCU) through a serial protocol. MCUs
act as ROS nodes, publishing and subscribing to ROS topics. In
RoboMuse, the Arduino acted as a ROS node, subscribing to velocity
commands from the ROS system while simultaneously publishing
the encoder data to the ROS Master running on the laptop, thus
facilitating odometry calculation.

Data Handling in ROS. Two ROS topics, namely /odom and /tf
store the odometry of the robot. The data received from the encoders
is converted to ROS messages compatible with these topics. The
/cmd_vel topic is used for sending velocity commands to the robot.
Both nav2d_operator and move_base nodes publish commands
to this topic at appropriate times. The node running inside the
Arduino subscribes to /cmd_vel topic and subsequently provides
signal to the motor driver to run the robot at the desired speed.

6 CONCLUSIONS
Now that the RoboMuse 4.0 has been established with the basic
necessities that are required for any mobile robot, it’s use as an ed-
ucational platform is unbounded. Various algorithms and concepts
associated with mobile robots can be easily implemented on the
robot. Additionally, students can focus only on the algorithmic side
of the tasks rather than worrying about the mobility and sturdiness
of the robot. This would lead to increased efficiency and reduced ef-
fort for the students while still providing them with the knowledge
that they aimed to acquire.

Robomuse 4.0 would be placed at IIT Delhi so that the students
here can continue research in the field of mobile robotics. The
next step would be to construct a smaller version of the robot
having additional sensors which would enable it to traverse smaller
environments. The target would also be to make it cheaper than
the RoboMuse 4.0.
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