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forces and moments which are generated at  the base of the ma- 
nipulator. Hence, diiect application of the analysis and control 
schemes for the fixed base robots to space robots is not possible. 

Fig. 2. In the first category, the position and orientation of the 

+ for the development of dynamic models of space ;bots. 
As an illustration, the method is used to  develop a computer 
simulator of a space manipulator that moves on a plane. The 
simulation results can be displayed using an animation program 
that has been developed in parallel to this research. 
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1 Introduction 
In contrast to manipulators on the Earth, whose bases are usu- 
ally fixed, the base of a space manipulator is mounted on a space- 
craft, e.g., a satellite, as shown in Fig. 1. Since a spacecraft is 

I ,  2, ..., n: Manipulator joints. 

i+l  

n 

/e End 
Effector 
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Fig. 1 A schematic diagram of a space robot. 

a free moving body its movement is not restricted. Thus, due 
to dynamic coupling that exists between the spacecraft and the 
nianipulator, spacecraft’s configuration changes while the ma- 
nipulator is in motion. The motion is caused by the reaction 
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Fig. 2 Control schemes. 

spacecraft are kept constant while the manipulator is perform- 
ing some task like capturing a target or constructing, cleaning 
or repairing another satellite. This type of requirement arises 
from the necessity of keeping the on board antennas, which may 
be required for communication and broadcasting purposes, in 
a specified position and orientation. The controls of both the 
spacecraft’s position and attitude are, therefore, proposed along 
with the control of the manipulator joints. Thrusters for position 
control and Control Moment Gyro (CMG) for attitude control 
(Komatsu et. al., 1990) may be used for the purpose of control- 
ling the spacecraft. Alternatively, only thrusters (Machida et. 
al., 1992) or reaction jets (Dubowsky et. al., 1989; Dubowsky 
and Torres, 1990) can be used to control the spacecraft. More- 
over, the manipulator is controlled by its joint actuators. In the 
second category, an attempt is made to solve the kinematic prob- 
lem of space manipulators in a way which is similar t20 that of 
the fixed base manipulators (Longman et. al., 19S7). For that, 
not the position but the spacecraft‘s attitude is controlled either 
by reaction wheels, jets or CMG, whereas the manipulator joint 
motions are achieved by joint actuators. This method is more 
complex than the previous one (Papadopoulos and Dubowsky, 
1990). However, a method called the virtual manipulators (Vafa 
and Dubowsky, 1987) can simplify the problem. In the third 
category, only n manipulator joint actuators are used (Unietani 
and Yoshida, 19S9; Koningstein and LJllman, 19S9) to control 
the system at hand. This is possible because the space robot 
under study has degrees of freedom (DOF). Note that the 
space robot containing an n DOF serial manipulator mounted 
on a spacecraft has n + 6 DOF. The additional six DOF is at- 
tributed to the spacecraft’s ability to move freely in the three 
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dimensional Cartesian space. However, in a space en\-ironment, 
under the assumption of no external forces and torques acting 
on the space robot the total linear and angular momenta of the 
system are conseryed. The momenta conservation contraints are. 
then, results in six more constraints in addition to the kinematic 
constraints that exist between the coupled bodies of the system. 
Hence, n controlling variables, e.g.. joint torques, are sufficient 
to control the space robot where the movement of the spacecraft 
due to the dynamic coupling is taken into account while evaluat- 
ing the joint motions. This scheme conserves fuel and electrical 
power (Papadopoulos and Dubowsky. 1990). 

In space robotics, a computer simulator plays an important 
role, particularly, due to difficulties in realizing the three di- 
mensional space environment. Therefore, most research in space 
robotics involve computer simulations before space robots are 
actually built. In this paper, a modeling method based on the 
scheme mentioned in the third category, i.e., a space robot car- 
rying an n DOF manipulator is controlled by manipulator joint 
actuators only, is suggested for the development of computer 
simulators. This scheme is preferred over others bccause, in dy- 
namics, an independent set of dynamic equations is preferable 
since the dimension of the problem is minimum, which, in turn, 
enhances the speed of the simulation algorithm. Moreover, if the 
set of generalized coordinates is not independent, the solution of 
a dynamic problem involves the solution of a set of differential 
and algebraic equations, which is far more complex than the 
numerical integration of purely differential equations (Gear and 
Petzold, 19S4; Park and Haug, 19%). 

In this paper, dynamic model of a space robot that consist 
of a spacecraft and an n DOF serial manipulator mounted on 
it is developed using the natural orthogonal complement (NOC) 
(Saha and Angeles, 1991; Saha, 1991). The effectiveness of the 
method is pointed out and, as an illustration, simulation of a 
three DOF space robot moving on a plane IS reported. 

2 Kinematic Modeling 

In order to  systematically derive kinematic and dynamic equa- 
tions, some definitions are given as follows: Referring to Fig. 3, 

C.. 
body, i 

Fig. 3 A free body diagram of a rigid body, i 

w,: three dimensional vector representing the angular velocity 
of the 2-th rigid body. 

C l :  three dimensional vector denoting the velocity of the mass 
center of the 1-th rigid body C,. 

t,: six dimensional twist rector of the 7-th rigid body which IS 

defined as 

n,: three dimensional vector of applied moment about C; 

f,: three dimensional vector of applied force a t  C,. 

w,: six dimensional wrench vector of the i-th rigid body which 
is defined, in parallel with the definition of the twist, as 

In addition, 

I,, m,: 3 x 3 inertia matrix of the i-th body about its mass 
center C, and the mass of the i-th body, respectively. 

M,: 6x6 extended mass matrix of the 2-th body which is defined 
bv 

(3) 

where 1 and 0 are the 3 x 3 identity and zero matrices, re- 
spectively. In eq.(3), matrix m,l represents the 3 x 3 matrix 
whose diagonal elements are m; and off diagonal terms are 
all zero. 

a,, h,: three dimensional vectors of angular momentum of the 
i-th body about C, and linear momentum of the 2-th body, 
respectively. Vectors a, and h, are given by 

a, = 1,w; and hi = m,ti (4) 

p*: six dimensional vector of eztended momentzrm of the 2-th 
body. This is defined as 

( 5 )  

Moreover, using the definitions of ti and M i ,  as in eqs.(l) and 
(3), respectively, the extended momentum, pi, of the i-th body 
is written as pi = Mit;. Furthermore, for the system at  hand 
consisting of n + 1 rigid bodies, a spacecraft and n links of the 
manipulator, the G(n + 1) dimensional vector of the generalized 
twist and the 6(n + 1) x 6(n + 1) generalized mass matrix are 
now defined as follows: 

t 3 [t:,tT,...,t:]' and M E  diag(M,,M1, . . . ,Mn) (6) 

where subscript s stands for spacecraft. 
In order to derive kinematic relat,ions for the space robot, first, 

angular velocity w e  and velocity te of the end effect,or are written 
in terms of the joint variables, i.e., 

w e  = w ,  + &el + . . . + enen (7) 
= Cs + w ,  x pS + Olel x p1 + . . . + Onen x pn (s) 

where w ,  and C, represent the angular velocity of the space- 
craft and the velocity of its mass center, respectively. Moreover, 

manipulator, whereas e;(i = 1,. . . , 71) is t.he unit, vect,or parallel 
to the axis of the i-th joint that couples the (1: - 1)st link t,o the 
i-th link of the nia.nipulat.or. Combining eqs.(7) and (S), twist 
of the manipulator end effect", t,, is derived as 

Bi(i  = 1,. . . ,n) is the joint rate for the i-th revolute pair of the 

t, = J,t, + J,6 (9) 
where six dimensional vect,or t, is the twist, of the spacecraft and 
n dimensional vector 6 contains the joint rates, whereas G x G 
matrix J, and G x n matrix J, are defined as follows: 
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Note that the expression p, x 1 in eq.(lO) is a 3 x 3 matrix which 
can operate on any three dimensional vector v resulting a nelv 
vector p, x v .  Moreover, p, (i = l , . . .  , n )  is the vector denoting 
the position of the end effector with respect to the 2-th joint and 
p, is equal to  p1 + rs. Vectors p, and pt, for z = 2, are shown 
in  Fig. 1. Xext, since the spacecraft is not controlled the twist 
of the spacecraft in terms of the joint motions is required. This 
is done as follows using the principle of momenta conservation: 
Total angular momentum about the origin of the inertia frame, 
0, a, and linear momentum, h,  are written as 

QI = Q, + C, x h, + (11 + (c" + slS) x hi +. . .+  
a n  + (cs + sns) x hn (11) 

h = h , + h l + . . . + h ,  (121 

where s,, z r, + s,,, for i = l , . . .  ,n and j = 1, ... ,i. Vectors,, 
is given by 

s,, E a, + a,+l + . . . + a, - r, (13) 
in which vectors a, and r, are indicated in Fig. 5 .  Combining 
eqs. (11) and (12), vector p that contains the total angular and 
linear momenta of the system a t  hand is expressed as 

p = C,SMt (14) 

where 6 x 6 matrix C, and 6 x 6(n + 1) matrix S are as follows: 

Now, applying the momenta conservation principle, p = con- 
stant. Moreover, if the system is at rest before it starts perform- 
ing any task, i.e., the initial total momenta are zero, then p = 0 
at any time during the motion of the robot. Hence, eq.(14) is 
rewritten as 

C,SMt = 0 Q'i) 
The generalized twist, t, whose derivation will be clear in the 
next section, is then given as 

t = T,t, + T,6 (15) 

where T, and T, are 6(n + 1) x 6 and 6(n + 1) x n matrices; 
respectively. Note that the elements of matrices S and T,, as in 
eqs.(l7) and (18), respectively, are such that ST = T,. There- 
fore, upon substitution of eq.(18) into eq.(17), the following ex- 
pression is obtained: 

where 6 x 6 symmetric matrix I, and 6 x n matrix I,, are defined 
as 

I, = TTMT, and I,, = TTMT, (20) 
From eq.(19), vector t, is readily obtained as 

Equation (21) is t1i.e desired expression for t, in terms of manip- 
ulator joint rates, 8. 

Finally, upon substitution of eq.(21) int.0 eq.(9) leads to an 
expression of the twist of, the end effector, t,, which is a linear 
transformation of vector 8, i.e., 

where 6 x n matrix T, is a function of joint angles and the 
spacecraft's orientation only, as the spacecraft's position c ,  does 
not appear in eq.(22). Matrix T, is written as 

T, = J, - JsI;lIs, (23) 

From eq.(23), it is clear that matrix T, is the well-known Gen- 
eralized Jacobian Matrix (Umet,alii and Yoshida, 1959) of the 
space robot under study. Moreover, eqs. (22) and (23) are the 
necessary relations for velocity analyses. For inverse kinematics, 
where joint variables are calculated f0r.a given set of Cartesian 
variables of the end effector, joint rates B are obtained as follows: 

For n = 6, matrix T, is a 6 x 6 matrix. Hence, the inverse 
of T, exists unless the system is in a singular cofiguration. 
Soiution 6 is 

6 = Tilt, (24) 

For n > 6;  the system is redundantly actuated. Therefore, 
eq.(22) leads to an underdetermined system. of six linear 
equations in n unknowns that does not define 8 uniquely. In 
this situation, an optimization approach can be undertaken 
such that the equality constraints of eq.(22) are satisfied. A 
unique solution, then, be found as 

6 = Tfte (25) 

which minimizes l/2(hTb). hfatrix Ti is defined as the 
pseudo-inverse of T, (Rao and Mitra, 1971) which is given 
as 

T,' = TF(T,TF)-' 

It is pointed out here that, contrary to holonomic systems, 
e.g., a serial or a parallel manipulator, position variables, i.e., 
joint angles, orientation and position of the spacecraft, are not 
readily available for given values of orientaion and position of 
the end-effector since the kinematic constraints of the system 
under study, eq.(9), are nonholonomic (Yakaniura and hlukher- 
jee, 1959). The nonholonomicity of the kinematic constraints 
implies that no function relating the joint angles of the manipu- 
lator with the orientation and position of the end effector exists 
such that its time derivative is eq.(9). However, if an experimen- 
tal model of a space robot exists simulation can be carried out 
using the values of the joint angles that are available from the 
sensor data. But reliance cannot be made on any sensor data 
while a computer simulator is attempted because the simulator is 
expected to  predict the behaviour of a space robot even without 
its real existance. Therefore, the joint angles and the orientation 
of the spacecraft are obtained by integrating eqs.(24) or (25) and 
(21), respectively. 

For acceleration analysis, eq.(9) is differentiated with respect 
to time which yields 

t, = J,t, + J,8 + J.ts + Jmb (26) 

where t, is obtained from the time derivative of eq.(19), namely, 

(27) 

is a 6 x 6 matrix that 

Cs(Ist3 + Isme) + C,(I,t, + I,,8 + I,t, + Is,6) = 0 

In eq.(27), Cs is equal to aC,  where 
takes the motion of C, into account and given by 

0 (U, xc,) x 1 
a= [o  0 1  

&[oreover, expression cs(Ist, + I,,,,&) in e q . ( ~ i ) ,  d . k b  is equal 
to nc,(I,t, +I,,,,&), vanishes due to eq.(19). Vector t, is t,hen t, = Te6 (22) 

2035 



solved from eq.(27) and substituted into eq.(26) to obtain the 
twist rate of the end effector, t,, i.e., 

where 

T,b f (Js - JsI;'Is)ts + (Jm - JsI;*Ism)b 

3 Dynamic Modeling 
Dynamic modeling of a space robot is done using the method- 
ology where a matrix called the natural orthogonal complement 
(NOC) is generated which is orthogonal complement of a kine- 
matic constraint matrix associated to the system under study. 
The NOC is used to transform the system's uncoupled Newton- 
Euler equations to an independent set of Euler-Lagrange equa- 
tions. The said kinematic constraint matrix is obtained by writ- 
ing existing kinematic constraints between the coupled bodies 
of the system at  hand as linear homogeneous equations in the 
generalized twist, t. This method was originally proposed for 
holonomic systems (Angeles and Lee, 19%) and has later been 
extended to nonholonomic systems (Saha and Angeles, 1991; 
Saha, 1991). The methodology using the NOC was successfully 
used for the dynamic modeling of serial manipulators (Angeles 
and Ma, 19S8), parallel robots (Ma and Angeles, 1989), systems 
with flexible bodies (Cyril et. al., 19S9) and Automatic Guided 
Vehicles (Saha and Angeles, 1989). In this paper, the method is 
used to model a space robot consisting of a spacecraft and a serial 
manipulator mounted on it, in order to verify the applicability 
of the methodology using the NOC to space robotics. 

For the purpose of deriving dynamic equations of motion of 
the sapce robot under study, it is assumed that the space robot 
consists of n+ 1 rigid bodies, a spacecraft, S, and n rigid links of 
the manipulator, as shown in Fig. 4. The kinematic constraints 

.-' 

Fig. 4 A serial chain. 

are derived in terms of the tviist.s of the individual bodies. This is 
done as follows: If 8, represents the joint rate of the j - th  revolute 
pair and e,  is the unit vector parallel to the axis of rotation of 
the j - th  pair then from Fig. 5 

w j  = w;+Bjej (29) 
Ci + wi x ri + wj x bj (30) Cj = 

where, w i ,  w j  and C i ,  Cj are the angular velocities of the i-t.h 
and j-t,li bodies and velocities of the mass centers of the i-th and 
j - th  bodies, respect,ively, whereas vectors ri and bj are shown in  
Fig. 5. Since e j  is parallel to the relative angular velocity of the 
j-t,h body with respect to the i-th body, w j  - w; ,  the following 
holds: 

e j  x (w j  - w i )  = 0 (31) 

J 

Fig. 5 Two rigid bodies coupled by a revolute pair. 

The kinematic constraints in terms of the twists of the i-th and 
the j - th  bodies are then obtained by combining eqs.(30) and 
(31), namely, 

where 6 x 6 matrices A, and A, are the kinematic constraint 
matrices associated to  twists t, and t,, respectively. They are 
given as follows: 

A,t, + A,tj = 0 (32) 

Alternatively, the kinematic constraints, eqs.(29) and (30), are 
expressed in such a way that t, is a function of t, and e,, i.e., 

t, = T,t, + T,dJ (34) 

where T, and T, are given by 

and T, [ ' 3 ,  ] (35) 
1 T, 

In eq.(35), s,,, defined according to eq.(13), is substituted for 
b,. The derivation of eq.(18) is now apparent from eq.(34) since 
recursive use of the latter for n + 1 rigid bodies of the system 
leads to the former. Kinematic relations for other type of joints 
that may be present in the manipulator in the form of eqs.(32) 
and (34) can be similarly derived. 

The dynamic equations are now derived by writing, first, the 
Euler equation of rotation of the 2-th body with respect to a 
fixed frame as 

I,&* + w ,  x I1w, = n!" + ny (36) 

where I, is the inertia matrix of the 2-th body about its mass 
center, whereas n!" and 11;" are working external and nonworking 
constraint moments, respectively, as indicated in Fig. 4. Then, 
Newton's second law of motion for the 2-th body is expressed in 
the fixed frame as 

m,c, = f;" + fy (37) 
Forces f," and fy are defined, similar to n!" and ny ,  as the 
working external and nonworking constraint forces acting a t  the 
mass center of the 2-th body, respectively. Combining eqs.(36) 
and (37), dynamic equations of motion of the 2-th body are writ- 
ten as 

M,t, + W,M,t, = w p  + w;" (38) 
where the extended angular velocity of the 7-th body. W,, is 
defined bv 

W; f ["io" 3 
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Now, combining eq.(38) for n + 1 bodies, 6(n + 1) uncoupled 
dynamic equations of the system at  hand are given as 

Mt + WMt = w'' + wN (39) 

where the 6(n + 1) dimensional generalized tn-ist, t ,  and the 
6(n + 1) x 6(n + 1) generalized mass matrix, M; are defined in 
eq.(6), whereas 6(n + 1) x 6(n + 1) generalized angular velocity 
matrix W is given by 

W E diag(W,, W1,. . . , W,) 

Moreover, 6(n + 1) dimensional vectors of ivorking and nonwork- 
ing wrenches, ww and wN,  respectively, are defined in a way sim- 
ilar to the definition of the generalized twist, as given in eq.(6). 
Using eq.(32), the kinematic constraints that exist between n+ 1 
bodies are now obtained as a linearhomogeneous equations in the 
generalized twist as 

A t  = 0 (40) 

where 6(n + 1) x G(n + 1) matrix A is the kinematic constraint 
matrix of the space robot under study. Furthermore, substitu- 
tion of eq.(21) into eq.(18) leads to an expression o f t  which is a 
linear transformation of the generalized speed, 0; i.e., 

t = Tb (41) 

For an independent set of joint rates, substitution of eq.(41) 
into eq.(40) yields 

A T = O  (42) 

which implies that matrix T is an orthogonal complement of ma- 
trix A. Note that, no special technique is employed, as required 
in Wehage and Haug (1982), Kamman and Huston (1984) etc. 
to find orthogonal complement matrices, howerer: different from 
T, to evaluate matrix T. Thus, T is termed as the natural or- 
thogonal complement (NOC) of A. In order to find the NOC, if 
the joint rates cannot be chosen as the set of n independent gen- 
eralized speeds, as in eq.(41), a different set, for example, twist 
of the end effector can be chosen to  evaluate the NOC which is 
associated to the twist of the end effector. 

Now, multiplication of TT to both sides of eq.(39) results in 
the following dynamical equations of motion of the space robot 
under study: 

where TTwN vanishes. This can be proved as follows: Power 
supplied to the system due to wN, tTwN, is zero. i.e., 

T T ( M t  + W M t )  = TTwW (43) 

tTW" = 0 (44) 

Using eq.(41), the foregoing expression is rewritten as 

bTTTwN 0 (45) 

For independent e,  
Finally, using eq.(41) and its time derivative, t = T6 + T b .  
eq.(43) becomes 

TTw" = 0 

1 6 + C 6 = 7  (46) 

where 

I E T T M T :  n x n generalized inertia matrix, 

C E T T ( M T +  W M T ) :  n x n generalized matrix of convective 
inertia terms, 

7 z TTw": n-dimensional vector of generalized external 
forces. 

From the foregoing discussion, then, it becomes apparent that 
eq.(46) represents the Euier-Lagrange dynamic equations of mo- 
tion of the system at hand. However, the derivations do not 
involve lengthy partial differentiations, which would be the case 
if either a straightforward or a recursive derivation of the Euler- 
Lagrange equations had been attempted. A point is made here 
that the derivation of dynamic equations of motion of a space 
manipulator, compared to its counterpart on the Earth, using 
the NOC involves writing six additional Newton-Euler equations 
for the spacecraft, as in eq.(39). Thus, expression of t,, as in 
eq.(21), and its time derivative need to be evaluated. Due to the 
complexity of expression -Ii1Is,,, the explicit calculation of t, 
from eq.(21) is not recommended. It is efficiently evaluated us- 
ing the scheme to find the NOC of a complex system (Saha and 
Angeles, 1991) and noting that matrix I, is a symmetric posi- 
tive deinite matrix whose Cholesky decomposition exists (Stew- 
art, 1973). Additionally, when a set of variables, different from 
the joint rates, is chosen as the independent set of generalized 
speed the control variables, e.g., joint torques, cannot be cal- 
culated directly from the dynamic equations of motion, eq.(4G), 
because the generalized force vector; T, does not contain the 
joint torques. Thus, an additional scheme is required. One such 
scheme is suggested in Saha (1991) where the power supplied 
to the system is expressed both in terms of the joint variables 
and the independent set of variables-twist of the end effetor 
can be a choice of the independent set-which are then equated. 
The solution of the resulting underdetermined system gives the 
values for the desired control variables. 

4 An Example: A Space Manipula- 
tor Moving on a Plane 

It is assumed that a space robot that consists of a three-link ma- 
nipulator mount.ed on a spacrcraft, as shown in Fig. 6, is moving 

Fig. 6 h space robot moving on a plane. 

on a plane. The system has three DOF and is controlled by 
only three joint actuators. For smooth motion of the robot, tra- 
jectoiy planning is done such tahat the robot starts and stops 
with zero velocity and acceleration. For simulation, first, the 
position and orientation of the end effector, E, and their first 
and second derivatives are given as inputs to find the required 
joint torques. This step is called inverse dynamics. These calcu- 
lated joint torques, as controlling commands, are then used for 
simulation purposes. 
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4.1 Trajectory Planning 
The space robot for which the results are reported here has three 
degrees of freedom. Thus, angle $, and coordinates x and y, as 
shown in Fig. 6, are sufficient to specify orientation and position 
of the end effector, respectively. In order to start and stop with 
zero velocity and acceleration, variables 3, I and y are assumed 
to be 5th-order polynomial functions of time. If f ,  represents 
either + or 5 or y then the polynomial function is given by 

f, = ao, + a1,t + . . . + US3t5 (47) 

where coefficients a,,, for i = 0,. . . ,5, are to be determined from 
the boundary conditions given below: 

Variables $, x and y are then calculated with tl = 0: $1 = 
-1.385 rad, z1 = 1.4625 m, y1 = 0.2906 m, and t z  = 120 sec, 
t+!~~ = 0, x2 = 1.951 m, y2 = 0.875 m. Variations of $, x and y 
vs. time are shown in Fig. 7 for step size At = 2 sec. In Fig. 7. 
“psi”, ‘.XI’ and “y” represent variables +, I and y, respectively. 
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Fig. 7 Desired path: variations of 3, x and y vs. time. 

4.2 Inverse Dynamics 
Inverse dynamics results for the space robot moi7ing on a plane 
are obtained without any consideration of dissipation and flexi- 
bility in the links or couplings. The essential dimensions and the 
inertial parameters of the space robot under study are given as: 
Referring to Fig. 6, 

For the spacecraft, 

For each manipulator link (all links are identical), 
width, d = 0.5 m, mass = 50 kg 

length, 1 = 0.3 m, diameter = 0.05 m, and mass = 6 kg 

Now, for desired values of t): x, y ,  and their first and second 
derivatives joint torques are calculated from the dynamic equa- 
tions of motion, eq.(46). Fig. 8 shows the variations of the joint 
torques, “tau-l”, “ t a u 2  and “tau-3” that act on joints 1, 2 and 
3 of the manipulator, respectively, vs. time. 
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0.15 1 I I 
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0.00 0.33 0.66 0.99 12 
*io2 time (sec) 

Fig. 8 Joint torques required to  follow the desired path. 

4.3 Simulation and Animation 

The torques that are obtained in inverse dynamics are now sup- 
plied to  the simulation program as the controlling torques of the 
space manipulator. Simulation results are obtained by integrat- 
ing the dynamical equations of motion, eq.(46), using Runge- 
Kutta-Fehlberg method (Butcher, 1987). The deviation of the 
simulated path from the desired path is shown in Fig. 9. The 
simulation errors-an error is calculated as the difference be- 
tween the desired and the simulated values of the variable un- 
der investigation-are found to be quite small. The maximum 
error, about 2%, is found in the values of coordinates along X- 
axis. The small simulation errors are attributed mainly to the 
accuracy of the developed algorithm for the system a t  hand. Ap- 
parent,ly, the major sources of errors of the simulation model lie 
in the solutions of t, and 8 that require the inversion of ma- 
trices I, of eq.(21) and I of eq.(46), respectively. Since, both 

0.96 
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0.61 e 

Y 

m 0.43 
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Fig. 9 Desired and the simulat.ed paths in  X-Y plane. 
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Fig. 10 Intermediate configurations during animation. 

matrices, I, and I, are symmetric positive definite Cholesky de- 
composition which is unconditionally stable algorithm (Stewart, 
1973) is used to solve for t, and 6 .  However, inaccuracies in the 
symmetric positive definiteness of matrices I, and I depend on 
the choice of algorithm used to generate them. The proposed 
dynamic modeling using the NOC does not involve any scheme 
which accumulates large errors either in generating matrices I, 
and I or any other system variables of the dynamic model, as in 
eq.(46). 

An animation software based on the X-library is developed in 
SPARC LT AS1000/E20 that allows one to see the motion of the 
space manipulator. Figure 10 shows some intermediate configu- 
rations of the space robot while an animation is performed. 

5 Conclusions 
A methodology based on the natural orthogonal complement 
(NOC) is developed for the simulation of space robots where 
a serial manipulator is mounted on a spacecraft. The niethod- 
ology is, however, applicable to  parallel systems as well, i.e., 
several serial manipulators are mounted on a spacecraft. More- 
over, an outline is given for systems with redundant actuations. 
Simulation and animation software are developed for a three de- 
grees of freedom planar space robot. The results show very little 
error, thus, confirming the stability of the developed simulation 
scheme. 
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