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Abstract 
 
An optimization methodology is presented for design of serial-chain planar robots for minimizing torque at joints, when its end-

effector is supposed to move on a prescribed path. In particular, the end-effector of the robot is allowed to move on a circular path. For 
the respective joint trajectories, the weighted sum of root mean square (RMS) of the actuating torques is minimized by the mass redistri-
bution of the links. To achieve the goal, the DeNOC (Decoupled natural orthogonal complement) based dynamics was formulated by 
representing the rigid links as a set of rigidly connected point-masses known as equimomental system. The methodology is illustrated 
using a planar two-degree-of-freedom (DOF) robot with two revolute joints.  
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1. Introduction 

Serial-chain robots are widely used industrially due to their 
versatility. Their design is often based on optimization of 
kinematic criteria like workspace, singularity, and minimum 
condition number, or on dynamic criteria like minimum 
torques, energy, shaking force and shaking moment. The latter 
problem is found to be more challenging due to the difficulty 
in mathematical modelling for optimization. In this paper we 
address the second aspect, where design is based on the 
minimum joint torque requirements. In Ref. [1], the dynamic 
quantities of a serial robot such as shaking force, shaking 
moment and driving torques were minimized by optimally 
distributing the mass of the links. The required actuator torque 
of a planar robot for a prescribed task was minimized in Ref. 
[2]. In Refs. [3-5], the average joint torque and electric input 
energy were minimized for a serial-chain robotic manipulator 
for a prescribed end-effector trajectory. In Ref. [6], a solution 
was proposed for minimizing the input torques of the serial 
manipulator based on minimum energy control and optimal 
distribution of the movable masses. The concept of point-
masses was addresed in Ref. [7] to see the effect of mass 
balancing on the actuator torques and consumed energy. In 
Ref. [8], the concept of equimomental system was applied for 
the minimization of constraint forces in industrial mani- 

pulators by redistributing their link masses.   
This paper addresses the above problem by formulating an 

effective dynamic model and applying it in optimum design. 
We proposed a methodolgy for minimizing the joint torques 
for a prescribed circular trajectory of the end-effector. To 
illustrate the methodology a two-DOF planar robot was 
considered whose link lengths were choosen based on 
kinetostatic optimization, as proposed in Ref. [9]. The 
dynamic performance of the kinetostatically optimized robot 
was not addressed in Ref. [9]. The results aid in deciding the 
dynamic parameters to minimize the joint torque. For the 
calculation of joint torque, DeNOC [10] based dynamics was 
used with the concept of equimomental system of point-
masses [11]. Two systems are said to be equimomental if they 
have the same mass, same mass center location, and same 
moment of inertia with respect to a common reference frame 
[12]. The concept of equimomental system is also referred to 
as point-mass system. It is used as a convenient way of 
representing the inertial properties which greatly influence the 
joint torque. Application of this concept in balancing of 
closed-loop mechanisms is well adressed in Refs. [13, 14]. 

The paper is organized as follows: Sec. 2 presents the 
modelling and inverse kinematics of a two-link robot. Sec. 3 
derives the inverse dynamics of the robot. Sec. 4 presents the 
optimization scheme with numerical example, where Sec. 5 
discusses the results. Finally, Sec. 6 concludes the paper. 

 
2. Modelling and inverse Kinematics 

This section describes a two-link robot arm and its inverse 
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kinematics. The results of inverse kinematics are required as 
inputs to the dynamic model for the calculation of joint 
torques. 

 
2.1 Modelling as equimomental system 

Fig. 1 shows the schematic representation of a planar two-
link robot with revolute joints. The mass of each link is 
denoted by mi, and link length by ai. The angle qi denotes the 
relative joint angle, the vector ri denotes the location of the 
center of mass Ci from the origin of the body-fixed frame Oi+1. 
Each link is represented by its equimomemtal system of three 
point-masses mij (i = 1,2 and j = 1,2,3), which are rigidly 
connected to the body-fixed frame of each link at Oi+1. 

The vector rij defines the position of the point-masses from 
the origin of the body-fixed frame. For the conversion of a 
continuous rigid body into an equimomental system of point-
masses, refer to Ref. [13].  

 
2.2 Inverse kinematics 

In this section, inverse kinematics is performed to find the 
joints trajectories for a prescribed circular trajectory of the 
end-effector. The circle of radius l is assumed to be traced by 
the end-effector of a robot with constant angular velocity in 
time T. The coordinate of the end-effector in terms of the 
center of the circle and its radius is given as 

 
cos(2 / )x u l t Tp= + ,  (1a) 
sin(2 / )y v l t Tp= + ,  (1b) 

 
where u and v are the coordinates of the center of the circle. 
The joint angles are calculated using Eqs. (1a) and (1b).  

 
1 1 2 2 1;q a q a a= = - ,  (2a) 

 
where the terms α1 and α2 are as follows: 

1
1 2 2 2 2tan [( sin( )) / ( cos( ))]y a x aa a a-= - - ,  (2b) 

1 2 2 2
2 2 tan / ( )B B A C C Aa - é ù= - ± + - -ê úë û

.  (2c) 

 
In Eqs. (2b) and (2c), 2 22 ;  2 ;A a x B a yº º  2 2

1 2[(C a aº + -  
2 2 )]x y- . The corresponding joint velocity and acceleration 

needed for inverse dynamics are then evaluated by using the 
concept of Jacobian reported in Ref. [15]. The joint velocities 
are derived as 
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where J is the 2 ´ 2 Jacobian matrix, and given by 
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The components of the input end-effector velocity are as 

follows, 
 

(2 / )sin(2 / )x l T t Tp p= -& ,  (5a) 
(2 / )cos(2 / )y l T t Tp p=& .  (5b) 

 
Furthermore, the joint accelerations are calculated as 
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  (7) 
2(2 / ) cos(2 / )x l T t Tp p= -&& ,  (8a) 
2(2 / ) sin(2 / )y l T t Tp p= -&& .  (8b) 

 
3. Inverse dynamics of two-link robot 

In this section, inverse dynamics algorithm of a two-link 
planar robot arm is presented, which will be used to find its 
joint torque.  

 
3.1 The DeNOC matrices for the point-masses 

Referring to Fig. 1, the DeNOC matrices for the robot arm 
are derived first. The velocity of each point-mass is given by 

 
;for 1,2 and 1,2,3ij i i ij i j= + ´ = =v v ω d ,  (9) 

 
where wi and vi are the angular velocity and linear velocity of 
the origin of the respective link, whereas vector dij º ai+rij 
denotes the position of point-mass from the origin of the 
respective links. The vector ai denotes the position of the 
origin of the body-fixed frame attached to the body, whereas 
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Fig. 1. A Two-link robot with three point-mass model. 
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the vector rij (i = 1, 2 and j = 1, 2, 3) denotes the location of 
each point-mass from the origin of body-fixed frame. For a 
system of point-masses, velocities of all the point-masses of 
the two links can be given from Eq. (9) as 

 
v = Dt% ,  (10) 

 
where v% is the 18-dimensional velocity vector, t  is the 12-
dimensional vector of twists [10], and D is the 18 ´ 12 matrix. 
Matrix D and vector t are defined by 

 
1 1

2 2
;

é ù é ù
º ºê ú ê ú
ë û ë û

D O t
D t

O D t
,  (11) 

 
where the 9 ´ 6 matrix Di and the 6-dimensional ti are as 
follows: 
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In Eq. (12), dij ´ 1, for i = 1, 2 and j = 1, 2, 3, is the 3´3 

cross-product tensor associated with vector dij, i.e., (dij ´ 1)x = 
dij ´ x, for any 3-dimensional Cartesian vector x. The term 1 is 
the 3 × 3 identity matrix. For a serial-chain system the twist t 
can be expressed in terms of its associated natural orthogonal 
complement (NOC) or its decoupled form, i.e., the DeNOC 
[10]. This is given by  

 

,=t Nθ&  where 1 2 and ,
T

l d q qé ùº º ë ûN N N θ& & & .  (13) 

 
In Eq. (13), N is the 12´2 NOC, whereas Nl and Nd are the 

12´12 and 12´2 matrices, respectively. Combining Eqs. (12) 
and (13), one can write the point-mass velocities v%  in terms 
of the joint rates, i,e., θ& , as 

 
=v Nθ&%% , where l dºN DN N% .  (14) 

 
The matrices Nl and Nd of Eq. (14) are given by Ref. [10] as, 
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21 2
;  and l d
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where O of Nl is the 6 ´ 6 matrix of zeros, 0 in Nd is the 6-
dimensional vector of zeros, whereas the 6´6 matrix A21 and 
the 6-dimensional vectors p1 and p2 are called the twist propa-
gation matrix and joint-motion propagation vectors, respec-
tively. The 6 ´ 6 matrix A21 and the 6-dimensional vector pi 
are given by 
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in which a21 = -a1 is the vector associated to the skew-
symmetric matrix a21´1. The vector, ei º [0 0 1] is the unit 
vector parallel to the axis of rotation of each joint. 

 
3.2 Equations of motion 

Here the equations of motion are derived to find the joint 
torque. The equations of motion are derived using the 
Newton’s equation of linear motion and the corresponding 
DeNOC matrices for the point-masses derived in sub-Sec. 3.1. 
The unconstrained Newton’s equations of linear motion for 
each point-mass is given as 

 
,  for i=1,2; 1,2,3ij ij ijm j =v = f& , (17) 

 
where mij is the mass, ijv& is the acceleration and ijf is the force 
acting on the respective point-masses of links 1 and 2. Eq. 
(17) can be written in compact form as 

 
Mv = f& %% % . (18) 
 
In Eq. (18), the 18 ´ 18 mass matrix 11 12.diag m mº éëM 1 1%  

13 21 22 23m m m m ùû1 1 1 1 , the 18-dimensional vectors of 
velocity and force  and ,v f& %% respectively, are 11 12

T Téº ëv v v& & &%   

13 21 22 23 ;
TT T T T ù
ûv v v v& & & &  11 12 13 21 22 23

TT T T T T Té ùº ë ûf f f f f f f%  
Now, pre-multiplication of the transpose of N% of Eqs. (14)-
(18) leads the minimal set of constrained equations of motion: 

 
T T=N Mv N f& %% % %% , (19) 

 
where º +v Nθ Nθ&& && &% %% . Eq. (19) is the independent set of equa-
tions of motion represented as 

 
+ =Iθ Cθ τ&& & , (20) 

 
in which the n ´ n I is the generalized inertia matrix and C 
contains the convective inertia terms. Moreover, t is the n-
dimensional vector of torques. The expressions of I, C and t 
are given by 

 
;  ;  T T Tº º =I N MN C N MN τ N f& %% % % % % % % . (21) 

 
Substituting the corresponding values, the torques can be 

evaluated recursively as 
 

2 2 2 2 2 2 2 1 1 1 1 1 1 1 21 2
ˆ ˆ ˆ( ); ( )T T T= + = + +f D M D t D t f D M D t D t A f& &% %& &  

 (22) 

1 1 1̂
Tt = p f ; 2 2 2

ˆTt = p f . (23) 
 

4. Optimization 

In this section, the joint torques are minimized by optimal 
distribution of the mass of each link. The robot considered is 
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the two-DOF planar arm whose link lengths were chosen on 
the basis of kinetostatic optimization [9]. Effect of dynamics 
on this robot is not discussed in Ref. [9]. Hence, the torque 
optimization based on the mass distribution presented in this 
section is a valuable contribution towards a suitably optimized 
design of a two-link two-DOF robot arm from both kinematic 
and dynamic points of view. 

 
4.1 A Kinetostatically optimized robot 

The design of a two-link robot arm based on the kinetostatic 
optimization, as given in Ref. [9], suggests the link lengths as 
a 2 1: 2 : 2a a = . It leads to the unity condition number of the 
Jacobian given by Eq. (4). Note that the unity condition num-
ber of the Jacobian is satisfied as when q1 = 0 and q2 = 3p/4. 
Hence, a trajectory around this configuration will provide the 
best kinematic performance. 

 
4.2 Objective function 

The objective of optimization here is to find the robot’s dy-
namic parameters for which the joint torques are minimized. 
For this, the weighted sum of the root mean squares (RMS) of 
the joint torques are minimized. Out of several criteria, the 
RMS is chosen for the reason that it gives equal emphasis on 
the results at every time instance [13].   

The weights 'siw  were chosen such that the sum is equal to 

one [16]: 1iw =å . The optimality criterion is proposed here 

as 
 

1 1, 2 2,Minimize      ( ) rms rmsz w wt t= +x . (24) 

 
4.3 Design variables and constraints 

A joint torque is influenced by link inertias, namely, the link 
masses and the moment of inertia. These inertia properties are 
conveniently represented by point-masses. Accordingly, the 
design variables are defined as 

 

11 12 13 11 21 22 23 21[ , , , , , , , ]Tm m m r m m m rºx . (25) 
 
The constraints should be implicit or the explicit function of 

design variables, and to be bound in such a way that the prac-
tical design solution is obtained. Here, the inequality con-
straints are also considered. The important condition of practi-
cal solution is that the moment of inertia of each link about its 
center of mass must be positive. The negative values of point-
masses do not matter till the total mass of the link is positive 
and moment of inertia about the center of mass is also positive. 
Besides, the location of the center of mass must not be too far. 

These constraints, for i = 1,2, and j = 1,2,3, are listed below: 
 

3

1

1.1  o o
i ij i

j

m m m
=

£ £å , (26a) 

2 ( - )i i im r I£ D , (26b) 

0.5 1.5o o
ij ij ijr r r£ £ , (26c) 

 
where  and o o

i ijm r are the parameters related to the original 
robot. Here, original refers to the robot parameters before 
optimization. Note in Eq. (26b), D is very small such 
that 2

i i im r I< . The ‘fmincon’ function of MATLAB’s [18] 
optimization tool box was used to minimize the multi-variable 
function z given by Eq. (24). 

 
4.4 Numerical example 

The parameters of the two-DOF robot are shown in Table 1. 
The joint trajectories were calculated, as given in sub-Sec. 3.2 
for the circular end-effector trajectory. The circle’s center is at 
u (0.5858 m) and v (0.5858 m) whose radius l = 0.3 m. The 
motion was to be completed in 5 seconds. The location of 
circular trajectory was chosen such that the pose of the kine-
tostatic optimized robot does not deflect much from its pose of 
condition number one [9]. The robot’s equivalent point-
masses are also given in Table 1.  

 
5. Results and discussion 

For the weighing factors (w1, w2) = (0.5, 0.5), both for the 
robot were analyzed. One can change weights and see their 

 
(a) Torque at joint 1   

 

                                     
(b) Torque at joint 2 

 
Fig. 2. Comparison of torques before and after torque optimization. 
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effects on the results by rerunning the MATLAB program 
written for the purpose. However, selection of weights de-
pends on how critical the designed parameters would be. For 
example, if the user does not want to make the 2nd motor large, 
more weight is to be given to it to make its torque requirement 
less, hence, the size and weight. In Ref. [17] the effect of 
weights on balancing of mechanism was well studied. Table 2 
shows the optimized design variables and the corresponding 
change in the original link parameters, namely, the mass, mass 
center location, and moment of inertia. The changed parame-
ters have been calculated using the values of optimized design 
variables substituted in equimomental conditions. For the 
equimomental conditions refer Ref. [13]. The RMS values of 
the torques are given in Table 3.  

6. Conclusions 

This paper has presented the dynamics formulation using 
the equimomental system of point-masses and its application 
to optimization of joint torques by redistributing the link 
masses. The three point-mass equimomental system was used 
to replace a rigid body. Equations of motion in point-masses 
were derived recursively to obtain the joint torques using 
Newton’s equations of linear motion and the corresponding 
DeNOC matrices for the point-masses. The proposed method-
ology was implemented to compare the performance of the 
kinetostatic optimized robot with the torque optimization. As a 
result, a complete optimization, from both kinematic and dy-
namic points of view, was undertaken, which is expected to 
certainly provide an improved robot design than only kine-
tostatically optimized robot arm. 
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