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Abstract. The UDUT – U and D are respectively the upper triangular and diagonal matrices – de-
composition of the generalized inertia matrix of an n-link serial manipulator, introduced elsewhere, is
used here for the simulation of industrial manipulators which are mainly of serial type. The decompo-
sition is based on the application of the Gaussian elimination rules to the recursive expressions of the
elements of the inertia matrix that are obtained using the Decoupled Natural Orthogonal Complement
matrices. The decomposition resulted in an efficient order n, i.e., O(n), recursive forward dynamics
algorithm that calculates the joint accelerations. These accelerations are then integrated numerically
to perform simulation. Using this methodology, a computer algorithm for the simulation of any n

degrees of freedom (DOF) industrial manipulator comprising of revolute and/or prismatic joints is
developed. As illustrations, simulation results of three manipulators, namely, a three-DOF planar
manipulator, and the six-DOF Stanford arm and PUMA robot, are reported in this paper.
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1. Intrduction

Simulation of industrial manipulators is defined here as, given the joint forces/
torques, find the joint positions. It is performed in two different steps, namely,
(i) solve for the joint accelerations from the dynamic equations of motion, i.e.,
forward dynamics, and (ii) integrate the joint accelerations. Thus, one requires
the dynamic equations of motion, i.e., the dynamic model, of the system at hand.
The conventional approach to obtain the dynamic model of a mechanical system,
consisting of rigid bodies coupled by kinematic pairs or joints, is to use either
Newton–Euler (NE) or Euler–Lagrange (EL) equations. While the NE equations
are obtained from the free-body diagrams, the EL equations result from the kinetic
and potential energy of the system. The former is not suitable for motion simu-
lation, as it finds the internal forces and torques that do not affect the motion of
the system. Alternatively, EL equations give independent set of equations that are
good for motion simulation, however, require complex calculations for the partial
derivatives. With the advent of digital computation, a series of new methods in the

� This paper is based on the presentation made in the EUROMECH 404 Colloquium held in
Lisbon, Portugal, September 20–23, 1999.
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study of dynamic modeling of mechanical systems were reported in the literature
[1–4]. If these formalisms are used in simulation they normally result in order n3,
i.e., O(n3), forward dynamics algorithms [5–7]. These methods use the following
strategy to solve for the joint accelerations:

(i) first, the elements of the inertia matrix are evaluated;
(ii) then, the decomposition of the inertia matrix, namely, the Cholesky decom-

position [8] is performed numerically; and
(iii) finally, the joint accelerations are solved by backward and forward substitu-

tions [8], respectively.

Since the complexity of the Cholesky decomposition is of order n3, O(n3), the
resulting forward dynamics algorithm also requires O(n3) computations. There are,
however, alternative approaches which find the forward dynamics algorithm recur-
sively and whose computational complexity is in the order n, O(n) [9–15]. There
are also parallel order n algorithms [16, 17] that require special computer hard-
ware, namely, a parallel architecture. Because of the special computer hardware
requirement parallel algorithms are not discussed further.

The algorithm by Armstrong [9] was the first to recursively solve the equations
of motion of an n-link manipulator mounted on a spacecraft. Later, Featherstone
[10] introduced the concept of articulated body inertia (ABI), which is obtained by
writing the equations of motion written for hinge points. The approach by Stejskal
and Valasek [14] is also similar to ABI approach, however, the book provides a
good comparison of different formalisms. Bae and Haug [11] used the variational
principle to obtain an O(n) algorithm. Rodriguez [12], on the other hand, presented
a novel robot inverse and forward dynamics algorithms based on Kalman filtering
and smoothing technique arising in the state estimation theory. The methodology
has been used to solve several other dynamics problems as well [18]. Schiehlen
[13] and Saha [15], however, have independently proposed a Linear Algebra ap-
proach to arrive at recursive forward dynamics algorithms. It is interesting to note
that, compared to the O(n3) schemes [5], advantage of an O(n) scheme in terms
of the computational complexity starts when n is large, e.g., n ≥ 10 for the algo-
rithm presented in this paper, as evident in Table I. The O(n) algorithms, however,
calculate the joint accelerations that are smooth functions of time [19]. As a result,
numerical integration is faster and, hence, the total computer time for simulation
may be less while comparing with the O(n3) schemes. Besides, O(n) algorithms
provide physical interpretations of the terms they calculate and the intermediate
steps they follow. Thus, the recursive robot forward dynamics is becoming more
and more popular.

In this paper, an order n algorithm [15] is implemented efficiently for the dy-
namic simulation of industrial manipulators which are mainly serial types. The
characteristics of the approach are:
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• extension of the concept of the Natural Orthogonal Complement [3] to define
the Decoupled Natural Orthogonal Complement [15] matrices in the deriva-
tion of the dynamic equations of motion;

• analytical decomposition of the generalized inertia matrix;
• uniform development of the recursive inverse and forward dynamics algo-

rithms for the serial multi-body systems [20];
• explicit analytical inversion of the inertia matrix [21], which may facilitate the

deeper understanding of the dynamics involved in a multi-body system;
• it is extendable to the parallel platform type closed-loop systems, as shown in

[22].

However, the contributions of this paper are as follows:

1. efficient implementation of the forward dynamics algorithm [15], as presented
in Section 3;

2. computational complexity analysis of the above-mentioned implementation,
also done in Section 3;

3. simulation of several industrial robots, namely, a three-DOF planar arm, the
six-DOF Stanford arm, and a six-DOF PUMA robot; and

4. comparison and verification of the simulation results with those available in
the literature [7, 11].

The paper is organized as follows. Section 2 presents the simulation scheme
[15], whereas Section 3 provides the computer algorithm for the purpose of simu-
lation. The simulation results are then given in Section 4. Finally, conclusions are
made in Section 5.

2. Simulation

Simulation is defined as the computation of the joint accelerations from the dy-
namic equations of motion, i.e., forward dynamics, followed by numerical inte-
gration. It is assumed that the dynamic model, i.e., the equations of motion, of an
n-DOF serial manipulator, as shown in Figure 1, be represented as

Iθ̈ = φ where φ ≡ τ − Cθ̇, (1)

in which I and C are the n × n generalized inertia matrix (GIM), and the matrix of
convective inertia terms, respectively. Moreover, the n-dimensional vectors, θ̇ and
θ̈ , are the joint velocity and accelerations, respectively, i.e., the first and second
time derivatives of the joint position vector, θ(≡ [θ1, . . . , θn]T ). Moreover, τ (≡
[τ1, . . . , τn]T ), is the n-dimensional vector of generalized forces due to external
driving moments and forces and those resulting from gravity and dissipation, etc.
In forward dynamics, the main interest is how to solve for vector θ̈ . Thus, it is
assumed that the vector φ is known, which can be computed efficiently from an
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Figure 1. An n-body serial manipulator.

O(n) inverse dynamics algorithm while θ̈ = 0 [15]. The GIM, I of Equation (1), is
now expressed using the the Decoupled Natural Orthogonal Complement Matrices
(DeNOC) matrices [15] as

I ≡ NT
d M̃Nd and M̃ ≡ NT

l MNl , (2)

where the 6n × 6n generalized mass matrix, M, and the 6n × 6n and 6n × n De-
NOC matrices, Nl and Nd , respectively, are defined as

M ≡




M1 O · · · O
O M2 · · · O
...

...
. . .

...

O O · · · Mn


 , Nl ≡




1 O · · · O
B21 1 · · · O
...

...
. . .

...

Bn1 Bn2 · · · 1


 ,

Nd ≡




p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...

0 0 · · · pn


 , (3)

in which the 6 × 6 matrix, Bij , and the six-dimensional vector, pi , are associated
with the relation between the twist of the ith link, ti(≡ [ωT

i , vT
i ]T ) – ωi and vi

being the three-dimensional vectors of angular velocity and linear velocity of the
mass center of the ith link, Ci , as shown in Figure 2, respectively – and that of the
j th link, tj , i.e.,

ti = Bij tj + pi θ̇i , (4)

where the joint rate, θ̇i , is the time derivative of ith joint angle, θi , as shown in
Figure 2, for a revolute joint. Matrices, Mi , Bij , and vector pi are given by

Mi ≡
[

Ii O
O mi1

]
, Bij ≡

[
1 O

Cij 1

]
and pi ≡

[
ei

ei × di

]
, (5)
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Figure 2. A coupled system.

in which Ii and mi are the 3 × 3 inertia tensor about Ci and the mass of the ith
link, respectively. Moreover, 1 and O being the 3 × 3 identity and zero matrices,
respectively, which, henceforth, should be understood as of dimensions compatible
to the size of the matrix in which they appear. Furthermore, Cij is the 3 × 3 cross-
product tensor, associated to the vector, cij (≡ cj − ci), as indicated in Figure 2,
which when operates on any three-dimensional Cartesian vector, x, results in a
cross-product vector, i.e., Cijx ≡ cij × x. Substituting the expressions of M, Nl ,
and Nd , Equation (3), into Equation (2), each element of the GIM, can be expressed
as

iij = pT
i M̃iBijpj where M̃i = Mi + BT

i+1,iM̃i+1Bi+1,i (6)

for i = 1, . . . , n; j = 1, . . . , i. Note that the 6 × 6 symmetric matrix, M̃i , for
i = 1, . . . , n, is computed recursively in which M̃n+1 = O, because there is no
(n + 1)st body in the system. Matrix M̃i is interpretted as the mass matrix of the
composite body, i, i.e., M̃i represents the mass and inertia properties of the system
comprising of (n − i + 1) rigidly connected bodies, namely, bodies #i, . . . , #n, as
indicated in Figure 1 by the dotted line.

2.1. UDUT DECOMPOSITION

The decomposition is based on the reverse Gaussian Elimination (RGE) of the
GIM, I of Equations (1) and (6), as outlined in Appendix B. It is explained in the
following steps:

1. The RGE of the GIM, I of Equation (1), as given in Appendix B, can be written
as

EI = L2 where E ≡ E2 . . . En, (7)
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in which the n × n matrix, Ek, for k = n, . . . , 2, is the elementary upper
triangular matrix (EUTM) defined in Appendix B, and E and L2, respectively,
are the n × n upper and lower triangular matrices.

2. An essential property of the EUTM, EK , similar to the elementary lower tri-
angular matrix [8], is

E−1
k ≡ (1 − αkλ

T
k )

−1 = 1 + αkλ
T
k , (8)

where αk and λk are defined in Equations (21) and (22), respectively. Using
Equation (8), the GIM, I, is written from Equation (7) as

I = UL2 where U ≡ E−1. (9)

In Equation (9), U and L2 are the n × n upper and lower triangular matrices,
respectively. Moreover, from the inverse of the EUTM, Equation (8), it is clear
that the diagonal elements of U are unity and the above-diagonal elements
are the components of the vector, αk, for k = 2, . . . , n, that are evaluated in
Equation (25).

3. Since the factorization given by Equation (9) is not unique [8], a unique de-
composition is obtained by normalizing the elements of L2 as

L2 = DL where D ≡ diag[m̂1, . . . , m̂n], (10)

D being the n × n diagonal matrix, whose non-zero elements are those of the
matrix, L2, as calculated in Equation (26). Hence, the diagonal elements of
matrix L are unity.

4. Since, the GIM, I, is a symmetric positive definite matrix, L ≡ UT [8], and,
hence, the desired decomposition of the manipulator GIM, I of Equation (1),
is given as

I = UDUT , (11)

where the elements of the matrices, U and D, are evaluated using Equations (25–
28).

2.2. FORWARD DYNAMICS ALGORITHM

Having found the decomposition of the GIM, given by Equation (11), an order n,
i.e., O(n), forward dynamics algorithm [15] is presented in three steps, namely A,
B, and C, below:

A. Solution for τ̂ : The solution, τ̂ = U−1φ, is evaluated as

τ̂i = τi − pT
i ηi,i+1, (12)

where τ̂n ≡ τn, and the six-dimensional vector, ηi,i+1, is obtained as
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ηi,i+1 ≡ BT
i+1,iηi+1 and ηi+1 ≡ ψ i+1τ̂i+1 + ηi+1,i+2, (13)

in which ηn,n+1 = 0. The new vector, ψ i+1, is the six-dimensional vector which is
evaluated in Appendix B.

B. Solution for τ̃ : The solution of the equation, Dτ̃ = τ̂ , involves the inverse of
the diagonal matrix, D of Equation (10), which is simple, namely, D−1 has only
nonzero diagonal elements that are the reciprocal of the corresponding diagonal
elements of D. Vector τ̃ is obtained as follows: For i = 1, . . . , n,

τ̃i = τ̂i/m̂i.

The scalar, m̂i , is defined in Equation (26).

C. Solution for θ̈ : In this step, θ̈ ≡ U−T τ̃ , is calculated, for i = 2, . . . , n, as

θ̈i = τ̃i − ψT
i µi,i−1, (14)

where θ̈1 ≡ τ̃1, and the six-dimensional vector, µi,i−1, is obtained from

µi,i−1 ≡ Bi,i−1µi−1 and µi−1 ≡ pi−1θ̈i−1 + µi−1,i−2, (15)

in which µ̃10 = 0.

3. Computer Algorithm

In this section, the computer algorithm of the forward dynamics scheme given in
Section 2.2 is presented. The implementation details are provided with the asso-
ciated computation count in terms of the number of multiplications/divisions (M)
and additions/subtraction (A). Here, components of a vector or matrix in a frame,
say, F , is denoted with [·]F , where ‘·’ is the vector or the matrix. The required
input to run the algorithm are now given below: For i = 1, . . . , n,

• Constant Denavit–Hartenberg (DH) parameters [23] – the DH parameters, as
defined in Appendix A with reference to Figure 8 – of the system under study,
i.e., ai, bi , and αi , for a revolute pair, and ai, bi , and θi , for a prismatic pair.

• Mass of each body, mi , and the vector denoting the distance of the (i + 1)st
joint from the ith mass center, Ci , in the (i + 1)st frame, i.e., [ri]i+1.

• Inertia tensor of the ith link about its mass center, Ci , in the (i + 1)st frame,
[Ii]i+1.

• Initial value for the variable DH parameter, i.e., θi , for a revolute pair, and bi ,
for a prismatic pair, and their first time derivatives, i.e., θ̇i and ḃi , respectively.

• Time history of the input joint forces/torques, i.e., τi .
• Each component of the six-dimensional vector, φ of Equation (1), i.e., φi .
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The implementation based on the three steps of Section 2.2, i.e., A, B, and C, is
presented next, along with their computational complexity count written inside the
symbols, { and }, at the right of the first line of each step or sub-step.

A. Solution for τ̂ : Calculate

1. the three-dimensional vector, [di]i: For i = 1, . . . , n, {4M 2A(n)}

[di]i+1 = [ai]i+1 − Qi[ri]i+1 : 4M 2A(10M 7A),

where the three-dimensional vector, [ai]i , and the 3 × 3 orthogonal matrix, Qi ,
that defines the orientation of the (i + 1)st link with respect to the ith one, are
given as

[ai]i ≡
[
ai cos θi
ai sin θi

bi

]
and Qi ≡

[ cos θi − cos αi sin θi sin αi sin θi
sin θi cos αi cos θi − sin αi cos θi

0 sin αi cos αi

]
,

in which the DH parameters, ai , bi , αi , and θi , are input. Note here that a
straightforward calculation of the expression, ([ai]i−Qi[ri]i+1), would require
10M 7A – 8M 4A for Qi[ri]i+1, 2M to obtain [ai]i , and 3A for the subtraction
– that is indicated within the parentheses. However, if one looks at the resulting
expressions, it becomes obvious that many terms assoiciated with ai , αi , and
the components of [ri]i+1 are constants and can be computed off-line. Thus, the
number of computations required in each time step reduces to 4M 2A, which
is counted. It is also pointed out here that the structure of the 3 × 3 orthogonal
matrix, Qi , is exploited to reduce the complexity of its multiplication with an
arbitrary three-dimensional vector from 9M 6A to 8M 4A.

2. the three-dimensional vector, [ci,i−1]i : For i = n, . . . , 2, {3A(n − 1)}

[ci,i−1]i = −[ri−1]i − [di]i : 3A

The above computation requires only 3A because [ri−1]i is input.
3. the 6 × 6 matrix, [M̂i]i : For the purpose of showing the computation details,

the following definition of M̂i , as defined in Equation (26), is introduced:

M̂i ≡
[

Îi FT
i

Fi Gi

]
, (16)

where Îi , Fi , and Gi are 3 × 3 block matrices, in which Îi and Gi are symmet-
ric.

(a) [M̂n]n: For i = n, {16M 17A}

[În]n = Qn[In]n+1QT
n : 16M 17A;

[Fn]n = O : nil; [Gn]n = mn1 : nil,
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where [In]n+1 and mn are input, and the two matrix multiplications require
only 16M 17A, instead of 2(27M 18A) = 54M 36A. This is due to the
structure of Qi and the symmetric elements of Ii . Moreover, matrices [Fn]n
and [Gn]n do not require any computation, which are indicated with the
word ‘nil’,

(b) [M̂i]i: For i = n − 1, . . . , 2, {(86n − 179)M (101n − 215)A}

[Gi]i+1 = mi1 + [Gi+1,i+1]i+1 : 3A; [Gi]i = Qi[Gi]i+1QT
i : 16M 17A;

[Gi+1,i+1]i+1[Ci+1,i]i+1 :
{

9M 2A, if i = n − 1,
15M 9A, otherwise;

→ [Fi]i+1 = [Fi+1,i+1]i+1 + ( ) :
{

6A, if i = n − 1,
9A, otherwise;

[Fi]i = Qi[Fi]i+1QT
i : 24M 22A;

[Fi+1,i+1]Ti+1[Ci+1,i]i+1 − [Ci+1,i]i+1[Fi]i+1 :
{

14M 15A, if i = n − 1,
15M 18A, otherwise;

→ [Îi]i+1 = [Îi+1,i+1]i+1 + ( ) : 6A; [Îi]i = Qi[Îi]i+1QT
i : 16M 17A

where to reduce the clumsiness of the expressions symbol ( ) is used to sub-
stitute a compound expression computed just left to it before → sign. For
example, to find [Fi]i+1, ( ) ≡ [Gi+1,i+1]i+1[Ci+1,i]i+1. This convention
will be followed throughout this section.

4. the six-dimensional vector, [ψ̂ i]i: To show the computation steps, vector ψ̂ i ,
as in Equation (26), is defined as

ψ̂ i ≡ [ψ̂T

i(t), ψ̂
T

i(b)]T , (17)

where (t) and (b) in the subscripts stand for the three-dimensional top and
bottom vectors containing respectively the top and bottom three components
of ψ̂ i . Similar definition associated to other six-dimensional vectors will be
used henceforth.

(a) [ψ̂n]n: For i = n, {2M}

[ψ̂n(t)]n = [În]n[en]n : nil; [ψ̂n(b)]n = mn[en]n × [dn]n : 2M,

where [en]n ≡ [ei]i ≡ [0, 0, 1]T . Thus, computations associated with [ei]i
either not required or simplified.

(b) [ψ̂ i]i: For i = n − 1, . . . , 2 {12M 12A(n − 3)}

[Îi]i[ei]i : nil;→ [ψ̂ i(t )]i = ( ) + [Fi]Ti ([ei]i × [di]i) : 6M 6A
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[Fi]i[ei]i : nil;→ [ψ̂ i(b)]i = ( ) + [Gi]i ([ei]i × [di]i ) : 6M 6A

5. the scalar m̂i : For i = n, . . . , 1, {2M 2A(n)}

[ei]Ti [ψ̂ i(t )]i : nil;→ m̂i = ( ) + ([ei]i × [di]i)T [ψ̂ i(b)]i : 2M 2A

6. the six-dimensional vector, [ψ i]i: For i = n, . . . , 2, {(6n − 7)M}

[ψ i(t )]i = [ψ̂ i(t )]i/m̂i : 3M; [ψ i(b)]i = [ψ̂ i(b)]i/m̂i :
{

2M, if i = n,

3M, otherwise;

7. the 6 × 6 matrix, [M̂ii]i: A definition similar to Equation (16) is used here.

(a) [M̂nn]n: For i = n, {15M 8A}

[ψ̂n(t)]n[ψn(t)]Tn : 6M;→ [Înn]n = [În]n − ( ) : 6A;
[Hnn]n = −[ψ̂n(b)]n[ψn(t)]Tn : 6M

[ψ̂n(b)]n[ψn(b)]Tn : 3M;→ [Gnn]n = mn1 − ( ) : 2A

(b) [M̂ii]i: For i = n − 1, . . . , 2, {21M 21A(n − 2)}

[ψ̂ i(t )]i[ψ i(t )]Ti : 6M;→ [Îii]i = [Îi]i − ( ) : 6A; [ψ̂ i(b)]i[ψ i(t )]Ti : 9M;
→ [Hii]i = [Hi]i − ( ) : 9A; [ψ̂ i(b)]i[ψ i(b)]Ti : 6M;
→ [Gii]i = [Gi]i − ( ) : 6A

8. the six-dimensional vector [ηi]i :

(a) [ηn]n: For i = n, [ηn]n = τ̂n[ψn]n {5M}
(b) [ηi]i : For i = n − 1, . . . , 2 {6M 6A(n − 2)}

τ̂i[ψ i]i : 6M;→ [ηi]i = ( ) + [ηi,i+1]i : 6A

9. the six-dimensional vector, [ηi−1,i]i−1:
For i = n, . . . , 2, {(22n − 26)M (14n − 18)A}

[ηi(b)]i × [ci,i−1]i :
{

4M 1A, if i = n,

6M 3A, otherwise; → [ηi−1,i(t)]i = [ηi(t )]i + ( ) : 3A;

[ηi−1,i(t)]i−1
= Qi−1[ηi−1,i(t)]i : 8M 4A;

[ηi−1,i(b)]i = [ηi(b)]i : nil;
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[ηi−1,i(b)]i−1
= Qi−1[ηi−1,i(b)]i :

{
6M 2A, if i = n,

8M 4A, otherwise;

10. the scalar, τi:

(a) For i = n, τ̂n = φn {nil}
(b) For i = n − 1, . . . , 1 {2M 3A(n − 1)}

[ei]Ti [ηi,i+1(t)]i : nil;
→ ( ) + ([ei]i × [di]i )T [ηi,i+1(b)]i : 2M 2A;→ τ̂i = φi − ( ) : 1A

B. Solution for τ̃ : Calculate for i = 1, . . . , n, {nM}

τ̃i = τ̂i/m̂i : 1M.

C. Solution for θ̈ : Calculate

1. the scalar, θ̈i:

(a) θ̈1: For i = 1, θ̈1 = τ̃1 {nil}
(b) the scalar, θ̈i: For i = 2, . . . , n, {6M 6A(n − 1)}

[ψ i(t )]Ti [µi,i−1(t)]i : 3M 2A → ( ) + [ψ i(b)]Ti [µi,i−1(b)]i : 3M 3A;
→ θ̈i = τ̃i − ( ) : 1A

2. the six-dimensional vector, [µi]i+1:

(a) [µ1]2: For i = 1, {12M 2A}

[µ1(t)]1 = θ̈1[e1]1 : nil; [µ1(t)]2 = QT
1 [µ1(t)]1 : 4M

[µ1(b)]i = θ̈1([e1]1 × [d1]1) : 2M; [µ1(b)]2 = QT
1 [µ1(b)]1 : 6M 2A

(b) [µi]i+1: For i = 2, . . . , n, {18M 11A(n − 1)}

θ̈i[ei]i : nil;→ [µi(t )]i = ( ) + [µi,i−1(t)]i : 1A;
[µi(t )]i+1 = QT

i [µi(t )]i : 8M 4A

θ̈i([ei]i × [di]i ) : 2M;→ [µi(b)]i = ( ) + [µi,i−1(b)]i : 2A;
[µi(b)]i+1 = QT

i [µi(b)]i : 8M 4A
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Table I. Computational complexities in forward dynamics.

Algorithm M A n = 6 n = 10

Proposed 191n − 284 187n − 325 862M 797A 1626M 1545A

Featherstone [10] 199n − 198 174n − 173 996M 871A 1792M 1567A

Valasek [14] 226n − 343 206n − 345 1013M 891A 1917M 1715A

Brandl et al. [14] 250n − 222 220n − 198 1278M 1122A 2278M 2002A

Walker and Orin [5] 1
6n

3 + 23
2 n2 1

6n
3 + 7n2 633M 480A 1653M 1209A

(as implemented by + 115
3 n − 47 + 233

6 n − 46

Featherstone [10])

M : Multiplication/Division; A: Addition/Subtraction

3. [µi,i−1]i: For 2, . . . , n, {6M 6A(n − 1)}

[µi,i−1(t)]i = [µi−1(t)]i : nil; [ci,i−1]i × [µi−1(t)]i : 6M 3A;
→ [µi,i−1(b)]i = [µi−1(t)]i + ( ) : 3A

The total complexity of the proposed implementation is then obtained by adding
the above number of multiplications and additions inside { and }. The result is
shown in Table I, where comparison with other algorithms is also made. The com-
plexity of the proposed algorithm, compared to other O(n) algorithms, is found to
be the best in terms of the number of multiplications required. Otherwise, it is very
similar to the one reported by Featherstone [10].

A computer program in C++ is written for the implementation of the forward
dynamics algorithm presented in this section. Moreover, an integration program
based on the Runge–Kutta–Fehlberg [24] (RKF) formula is also developed in C++
to solve the dynamic equations of motion written in the state-space form. The
simulation results are presented and discussed in Section 4.

4. Results

In order to test the simulation scheme presented in Sections 2 and 3, simulation
of three manipulators, namely, (i) a three-DOF all revolute planar arm; (ii) the
six-DOF Stanford arm with five revolute joints and one prismatic joint, as shown
in Figure 3(i); and (iii) a six-DOF PUMA robot with all revolute joints, are per-
formed. Two types of simulations are done: (a) free-fall and (b) forced. In the
case of free-fall, it is assumed that no external joint forces/torques are acting. The
motion of the manipulator is due to pure gravity only. In forced simulation, joint
forces/torques, i.e., vector τ of Equation (1), required to follow a given trajectory,
e.g., Equation (18), are given as input, whereas vector φ is calculated from an
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Figure 3. Six-DOF serial manipulators.

inverse dynamics program, say, as in [20], while θ̈ = 0.

θi(or bi) = 1

2

[
2π

T
t − sin

(
2π

T
t

)]
;

θi : for a revolute joint; bi: for a prismatic joint. (18)

Three-DOF arm: The simulation results obtained for the three-DOF planar arm are
compared with those obtained from the explicit dynamic equations of motion, as
in Angeles [7] or Saha [21]. The results in both the cases, i.e., free-fall and forced,
exactly match. Note that, for the forced simulation, the joint torques are calculated
to maintain the joint trajectory given by Equation (18) with the following values:
T = 10.0 sec; and initial conditions at time, t = 0, i.e., θ̇i (0) = θi(0) = 0,
for i = 1, 2, 3. The plots are not shown here, as the plots for the more complex
manipulators, namely, the Stanford arm and a PUMA robot, obtained from the
same algorithm are given next and discussed.

The Stanford arm: The Denavit–Hartenberg (DH) parameters [23] of the Stanford
arm, Figure 3(i), along with its mass and inertia properties, are shown in Table II(i).
The definitions of the DH parameters, as indicated in Figure 8, used to find the
values in Table II(i) are given in Appendix A.

1. Free-fall simulation. First, the free-fall simulation of the Stanford arm is carried
out with the following values: T = 10.0 sec; θi(0) = 0, for i �= 2, 3, θ2(0) = 90◦,
b3(0) = 0; θ̇i(0) = 0, for i �= 3, and ḃ3(0) = 0. Time step, �T , for numerical
integration is taken as, �T = 0.01 sec. Variations of the joint positions vs. time
are shown in Figures 4(i)(a–f).
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Table II. DH parameters, and mass and inertia properties.

i ai bi αi θi mi rx ry rz Ixx Iyy Izz

(m) (m) (deg) (deg) (kg) (m) (kg-m2)

(i) For the Stanford arm [Figure3(i)]

1 0 0.1 –90 θ1[0] 9 0 –0.1 0 0.01 0.02 0.01

2 0 0.1 –90 θ2[90] 6 0 0 0 0.05 0.06 0.01

3 0 b3 0 0[0] 4 0 0 0 0.4 0.4 0.01

4 0 0.6 90 θ4[0] 1 0 –0.1 0 0.001 0.001 0.0005

5 0 0 –90 θ5[0] 0.6 0 0 0 0.0005 0.0005 0.0002

6 0 0 0 θ6[0] 0.5 0 0 0 0.003 0.001 0.002

(ii) For the PUMA Robot [Figure 3(ii)]

1 0 0 –90 θ1[0] 10.521 0 0 0.054 1.612 –1.612 0.5091

2 0.432 0.149 0 θ2[0] 15.761 0.292 0 0 0.4898 8.0783 8.2672

3 0.02 0 90 θ3[0] 8.767 –0.02 0 –0.197 3.3768 3.3768 –0.3009

4 0 0.432 –90 θ4[0] 1.052 0 –0.057 0 0.181 –0.1273 0.181

5 0 0 90 θ5[0] 1.052 0 0 –0.007 0.0735 0.1273 –0.0735

6 0 0.056 0 θ6[0] 0.351 0 0 0.019 0.0071 0.0071 0.0141

Values inside [ ] under column θi and bi denote initial value.

As no results for such simulation are readily available they are interpreted in-
tuitively. For example, referring to Figure 3(i) and the initial configuration of the
Stanford arm given in Table II(i), the motion of joint 3 should increase sharply once
the joint 2 turns more than 90◦. This is true, as evident from Figures 4(i)(c) and (b),
respectively. In Figure 4(i)(b), the joint 2 turns 90◦ from its initial position of 90◦,
i.e., 1.5708 rad, when the value becomes zero. This happens a little after 0.5 sec,
when the displacement of joint 3 starts picking up (Figure 4(i)(c)).
2. Forced simulation. The forced simulation is performed next with the joint force/
torques calculated to maintain the trajectory given by Equation (18) with the fol-
lowing values: T = 10.0 sec; θi(0) = 0, for i �= 2, 3, θ2(0) = 90◦, b3(0) = 0;
θi(T ) = 60◦, for i �= 3, b3(T ) = 0.1 m. The calculated joint force/torques are
shown in Figure 5, which will be the input, vector τ of Equation (1), for the
forced simulation. The initial conditions are same as in the free-fall simulation.
The simulated joint positions are shown in Figures 6(i)(a–f). The results show that
the system deviates from the desired trajectory, i.e., Equation (18), after about
2.5 sec. In order to verify the integration results, two standard routines available
in NEWMOS� software are used. Initially, SHAMGOR algorithm, which is based
on the Adams–Bashforth–Moulton [24] (ABM) formula, is used. The comparison

� A simulation software in C at the Institute of B Mechanics, University of Stuttgart, Germany.
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Figure 4. Free fall simulation: Positions at joint (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6.

of the results are shown in Figures 6(i)(a–f). Later, DVERK routine of NEWMOS
based on the RKF formula is also used, which produced similar plots. Note that in
both the cases tolerance value is taken as 10−6.

The overall simulation result is then verified by comparing the simulated po-
sitions of the end-effector with those reported in Bae and Haug [11], where com-
parison was done with a commercial software, DADS. Since the present dynamic
formulation is in the joint space, a forward kinematics program is written to obtain
the end-effector positions. The results are shown in Figures 7(a–c). Note here that
the displacement of the end-effector along Y1, as in Figure 7b, is the end-effector
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Figure 5. Force/torques at joint (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6.

displacement plot given in Bae and Haug [11]. The results show a similar trend.

A PUMA robot: The DH parameters of the PUMA robot, as shown in Figure 3(ii),
along with its mass and inertia properties are given in Table II(ii). The simulations
are performed with the in-house developed RKF based integration scheme, as the
results for the Stanford arm with this scheme is very close to the other established
algorithms.

1. Free-fall simulation. Free-fall simulation of the PUMA robot is carried out sim-
ilar to the Stanford arm, where T = 10.0 sec; θ̇i = θi(0) = 0, for i = 1, . . . , 6,
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Figure 6. Forced simulation: Positions at joint (a) 1; (b) 2; (c) 3; (d) 4; (e) 5; (f) 6.
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Figure 7. Forced simulation: End-effector positions along (a) X1; (b) Y1; (c) Z1, axes.

and �T = 0.01 sec. Variations of the joint positions vs. time are shown in Fig-
ures 4(ii)(a–f). It is clear from Figure 3(ii) that due to the length, a3 = 0.02, the
joint 2 will rotate in the positive direction, which is evident from Figure 4(ii)(b).

2. Forced simulation. The forced simulation is performed next with the joint force/
torques calculated to maintain the trajectory given by Equation (18) with the fol-
lowing values: T = 10.0 sec; θi(0) = 0, and θi(T ) = π , for i = 1, . . . , 6.
The calculated joint torques are shown in Figure 5(ii). Using the same initial con-
ditions as in the free-fall simulation, the simulated joint positions are shown in
Figures 6(ii)(a–f). The results show that the system deviates from the desired tra-
jectory, Equation (18), after about 6 sec.

5. Conclusions

Based on the UDUT decomposition of the generalized inertia matrix resulting from
the dynamic equations of motion, i.e., I of Equation (1), an efficient implemen-
tation of the order n, O(n), forward dynamics algorithm [15] is presented. The
complexity analysis of the proposed implementation is also carried out, which is
compared in Table I with other algorithms. Note that the proposed implementation,
compared to other O(n) algorithms, is the best in terms of multiplication count,
even better than the one reported by the author earlier [15], (201n−335)M (193n−
361)A.

Using the proposed algorithm, simulations of three manipulators, namely, a
three-DOF arm, the six-DOF Stanford arm, and a six-DOF PUMA robot, are per-
formed, whose results are given in Section 4 and discussed. The comparison of the
simulation results, mainly, the one with Bae and Haug [11] for the Stanford arm
validates the developed simulation algorithm and program.
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Figure 8. DH nomenclature.

Appendix A. Denavit–Hartenberg Nomenclature

In order to describe the the Denavit–Hartenberg (DH) nomenclatures [23] that is
followed here, note that the manipulator under study, as shown in Figure 1, con-
sists of n + 1 bodies, namely, a fixed “base” and n links denoted by #1, . . . , #n,
coupled by n kinematic pairs, say, a revolute or a prismatic, numbered as 1, . . . , n,
respectively. Referring to Figure 1, the ith pair couples the (i − 1)st and the ith
links. Moreover, a coordinate system Xi , Yi , Zi is attached to the (i − 1)st link.
Then, for the first n frames, DH parameters are defined according to the following
rules (referring to Figure 8):

1. Zi is the axis of the ith pair. Its positive direction can be chosen arbitrarily.
2. Xi is defined as the common perpendicular to Zi−1 and Zi , directed from the

former to the latter. The origin of the ith frame, Oi , is the point where Xi

intersects Zi . If these two axes intersect, the positive direction of Xi is chosen
arbitrary. The origin, Oi , is coincides with the origin of the (i − 1)st frame,
Oi−1.

3. the distance between Zi and Zi+1 is defined as ai , which is nonnegative.
4. the Zi coordinate of the intersection of the Xi+1 axis with Zi is defined as

bi , which thus can be either positive or negative. For a prismatic joint, bi is
variable.

5. the angle between Zi and Zi+1 is defined as αi , and is measured about the
positive direction of Xi+1, and

6. the angle between Xi and Xi+1 is defined as θi , and is measured about the
positive direction of Zi . For a revolute joint, θi is variable.

Since no (n + 1)st link exists the above definitions do not apply to the (n + 1)st
frame and it can be chosen at will.
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Appendix B: RGE of the GIM, I

Conventionally, the Gaussian elimination (GE) [8] begins from the first column of
the matrix under interest. In the proposed elimination, it is assumed that the GE
of matrix I, Equation (1), whose elements are given by Equation (6), starts from
the nth column. This is to obtain recursive relations starting from the nth body.
Thus, the name reverse Gaussian elimination (RGE) is used. In RGE, after the
annihilation of the first (n − 1) elements of the nth column, the modified inertia
matrix, denoted by Ln, is looks like

Ln ≡




i
(n)
11 sym 0
...

. . . 0
i
(n)

n−1,1 · · · i
(n)

n−1,n−1 0
in1 · · · in,n−1 inn


 , (19)

where inn is the pivot [8] and i
(n)
ij are the modified elements of I, whereas ‘sym’

denotes the symmetric elements of the (n − 1) × (n − 1) matrix, resulting from
the deletion of the nth row and column of matrix Ln. Equation (19) is realized
by premultiplying matrix I with the elementary upper triangular matrix (EUTM)
of order n and index n, as done in GE with elementary lower triangular matrix
(ELTM) [8]. An EUTM of order n and index k, denoted by Ek, is defined as

Ek ≡ 1 − αkλ
T
k , (20)

where 1 is the n × n identity matrix and the n-dimensional vectors, αk and λk, are

αk ≡ [α1k, . . . , αk−1,k, 0, . . . , 0]T , (21)

λk ≡ [ 0, . . . , 0, 1, . . . , 0]T . (22)

From Equations (21) and (22), the EUTM, Ek, Equation (20), has the following
structure:

Ek ≡




1 0 · · · −α1k · · · 0
. . .

...
...

...
...

1 −αk−1,k · · · 0
1 · · · 0

0′s . . .
...

1




, (23)

where 0’s imply zeros. Moreover, in the RGE, the modified matrix after the anni-
hilation of the first k − 1 elements of the kth column is expressed as

Lk = EkLk+1. (24)

Note that, if k = n and Ln+1 ≡ I, the matrix, Ln, as in Equation (19), follows
from Equation (24). Furthermore, the elements of Ek and Lk, namely, αik and i

(k)
ij ,

respectively, are computed from the following scheme:
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• For k = n, . . . , 2; Do i = k − 1, . . . , 1; Do j = i, . . . , 1

αik = pT
i ψ ik and i

(k)
ij = pT

i M̂ikBijpj (25)

end do j ; end do i; end for k.

In Equation (25), matrix Bij , and vectors pi and pj are defined in Equation (5),

whereas the six-dimensional vector ψ̂ ik and the terms associated to it are given as

ψ̂k ≡ M̂kpk, ψ̂ ik ≡ BT
kiψ̂k, m̂k ≡ pT

k ψ̂k, (26)

ψk ≡ ψ̂k

m̂k

and ψ ik ≡ ψ̂ ik

m̂k

. (27)

In Equation (26), the definition, M̂k ≡ M̂k,k+1, is used to simplify the notations.
The 6 × 6 matrix, M̂ik of Equation (25), and M̂k of Equation (26), are evaluated
from the following relations:

M̂ik = Mi + BT
i+1,iM̂i+1,kBi+1,i and M̂kk = M̂k − ψ̂kψ

T
k , (28)

where k = n, . . . , 2; i = k − 1, . . . , 1. Moreover, for i = k − 1, M̂i+1,k ≡ M̂kk,
and M̂n ≡ Mn.

Note that, in contrast to the definition of M̃i associated to the composite body,
i, as in Equation (6), the matrix, M̂i (≡ M̂i,i+1), as in Equation (28), for k = i + 1,
has the following interpretation: It represents the mass and inertia properties of the
articulated body i, which is defined as the system consisting of (n− i + 1) bodies,
#i, . . . , #n, that are coupled by joints i+1, . . . , n, i.e, replace the fixed joints of the
ith composite body, as shown in Figure 1 by the dotted line, by kinematic pairs,
say, a revolute joint or a prismatic. Matrix, M̂i is the articulated-body inertia of
link i [10], and the state estimation error covariance [12] that satisfies the dis-
crete Riccati equations. Thus, it is commented that a correlation exists between the
Gaussian elimination technique and the Kalman filtering approach, which can be
exploited for the deeper understanding of the dynamics characteristics of a complex
mechanical system. Finally, the scalar, m̂i , is interpreted as the moment of inertia
of the articulated body, i, about the axis of rotation of the ith joint.

Acknowledgments

The research work reported in this paper was possible under the Department of
Science and Technology (DST), Government of India, Grant No. HR/OY/E-02/96.
The last part of the work is, however, completed during the author’s research stay
in the Institute of B Mechanics, University of Stuttgart, Germany, as a Humboldt
Fellow in 1999. The author sincerely acknowledges the financial supports from



84 S.K. SAHA

both the DST and the AvH, and thanks Prof. Schiehlen for hosting the author in his
institute.

References

1. Huston, H. and Passerello, C.E., ‘On constraint equations–A new approach’, ASME J. Appl.
Mech. 41, 1974, 1130–1131.

2. Wehage, R.A. and Haug, E.J., ‘Generalized coordinate partitioning for dimension reduction in
analysis of constrained dynamic systems’, ASME J. Mech. Design 104, 1982, 247–255.

3. Angeles, J. and Lee, S., ‘The formulation of dynamical equations of holonomic mechanical
systems using a natural orthogonal complement’, ASME J. Appl. Mech. 55, 1988, 243–244.

4. Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, McGraw-Hill,
New York, 1996.

5. Walker, M.W. and Orin, D.E., ‘Efficient dynamic computer simulation of robotic mechanisms’,
ASME J. Dynam. Systems, Measurements, Control 104, 1982, 205–211.

6. Kane, T.R. and Levinson, D.A., ‘The use of Kane’s dynamical equations for robotics’, Internat.
J. Robotic Res. 2(3), 1983, 3–21.

7. Angeles, J., Rational Kinematics, Springer-Verlag, New York, 1997.
8. Golub, G.H. and Van Loan, C.F. Matrix Computations, John Hopkins University Press,

Baltimore, MD, 1983.
9. Armstrong, W.W., ‘Recursive solution to the equations of motion of an n-link manipulator’,

in Proceedings of the 5th World Congress on Theory of Machines and Mechanics, Montreal,
Canada, ASME, New York, Vol. 2, 1979, 1343–1346.

10. Featherstone, R., ‘The calculation of robot dynamics using articulated-body inertias’, Internat.
J. Robotic Res. 2(1), 1983, 13–30.

11. Bae, D. and Haug, E.J., ‘A recursive formulation for constrained mechanical system dynamics:
Part I. Open loop systems’, Mech. Structures Mach. 15(3), 1987, 359–382.

12. Rodriguez, G., ‘Kalman filtering, smoothing, and recursive robot arm forward and inverse
dynamics’, IEEE Trans. Robotics & Automation RA-3(6), 1987, 624–639.

13. Schiehlen, W., ‘Computational aspects in multibody system dynamics’, Comput. Methods Appl.
Mech. Engrg. 90(1–3), 1991, 569–582.

14. Stejskal, V. and Valasek, M., Kinematics and Dynamics of Machinery, Marcel Dekker, New
York, 1996.

15. Saha, S.K., ‘A decomposition of the manipulator inertia matrix’, IEEE Trans. Robotics &
Automation 13(2), 1997, 301–304.

16. Bae, D. and Haug, E.J., ‘A recursive formulation for constrained mechanical systems dynamics:
Part III, Parallel processing implementation’, Mech. Structures Mach. 16, 1987, 249–269.

17. Fijany, A., Sharf, I. and D’Eleuterio, M.T.D., ‘Parallel O(logN) algorithms for computation of
manipulator forward dynamics, IEEE Trans. Robotics & Automation 11(3), 1995, 389–400.

18. Rodriguez, G., Jain, A. and Kreutz-Delgado, K., ‘A spatial operator algebra for manipulation
modeling and control’, Internat. J. Robotic Res. 10(4), 1991, 371–381.

19. Ascher, U.M., Pai, D.K. and Cloutier, B.P., ‘Forward dynamics, elimination methods, and
formulation stiffness in robot simulation’, Internat. J. Robotic Res. 16(6), 1997, 749–775.

20. Saha, S.K., ‘Dynamic modeling of serial multi-body systems using the decoupled natural
orthogonal complement matrices’, ASME J. Appl. Mech. 66(4), 1999, 986–996.

21. Saha, S.K., ‘Analytical expression for the inverted inertia matrix of serial robots’, Internat. J.
Robotic Res. 18(1), 1999, 116–124.

22. Saha, S.K. and Schiehlen, W.O., ‘Recursive kinematics and dynamics for closed loop multibody
systems’, Internat. J. Mech. Structures Machines 29(2), 2001, 143–175.



SIMULATION OF INDUSTRIAL MANIPULATORS BASED ON THE UDUT DECOMPOSITION 85

23. Denavit, J. and Hartenberg, R.S., ‘A kinematic notation for lower-pair mechanisms based on
matrices’, ASME J. Appl. Mech. 77, 1955, 215–221.

24. Shampine, L.F., Numerical Solution of Ordinary Differential Equations, Chapman and Hall,
New York, 1994.


