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Abstract. In this paper, dynamic model of a class of parallel systems, namely, the hexaslides, is
proposed. The model developed is based on the concept the decoupled natural orthogonal complement
(DeNOC) matrices, introduced elsewhere. The dynamic model of hexslides, though complex due to
the existence of multi-loop kinematic chains, is required for actuator power estimation, computed-
torque control, optimum tool trajectory generation, etc. The use of DeNOC offers many physical
interpretations, recursive algorithms, and parallel computations. Using the proposed dynamic model,
a parallel inverse dynamics algorithm has been presented to compute the actuator forces. This is useful
to choose suitable motors for an application. An illustration is provided using an existing machine
tool based on hexaslides, namely, the HexaM, while it is carrying out a circular contouring. Secondly,
the effect of leg and slider inertias is also studied, which clearly suggests that neither of these can be
neglected while finding the actuator forces.
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1. Introduction

The parallel kinematic machines (PKMs) offering six degree of freedom (DOF)
can be broadly classified as (i) Hexapods [1, 2] having variable-length struts and
(ii) Hexaslides [3–5] having fixed-length legs, as shown in Figure 1. In case of
Hexapods, the variation in leg-lengths determines the position and orientation of
the moving tool platform or the end effector in the 3-dimensional Cartesian space.
On the other hand, the movement of the sliders connecting the fixed platform and
the legs decide the position and orientation of the tool platform of Hexaslides.
Actuators, usually the heavy parts of the hexaslides, are fixed at the base so that
the machine carries only the lighter masses, i.e., the legs, joint assemblies, and
the moving platform. Hence, higher velocities and accelerations are achievable
at the end-effector of the hexaslides. The three major machine tools based on
Hexaslide architecture are (i) Hexaglide with coplanar-parallel rails [3]; (ii) HexaM
with slanted rails [4]; and (iii) Linapod with vertical rails [5]. A general hexaslide
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Figure 1. Parallel kinematic machines.

Figure 2. A general hexaslide machine tool.

machine tool is shown in Figure 2. The sliders move along the six distinct rail-
axes, Ai Ei , whereas the legs of constant length are connected to the sliders through
universal joints, Ui . Other end of each leg is connected to the tool platform through
spherical joints, Bi .

The kinematics of parallel manipulators has been studied extensively, whereas
fewer papers can be found on dynamics [6–8]. Formulation methods to derive
the dynamics equations of motion of a mechanical system fall mainly into two
categories, namely, (i) Euler-Lagrange (EL), and (ii) Newton-Euler (NE) [8]. Unlike
in serial kinematic chain mechanical systems, in multi-loop mechanical systems like
in hexaslides all the joint variables are not independent due to the existence of non-
linear loop closure constraints. The closed-loops of the system make the dynamic
computations more complex and computationally expensive. The computational
recursiveness of many methods [9] and others applicable to serial manipulators
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is far from being straightforward when applied to PKMs. Several algorithms of
inverse dynamics of PKMs, [9–13] and others, were reported in the past few years.
Adopting the NE approach, Kim and Ryu [14, 15] developed the forward and
inverse dynamics equations of hexaslides.

In order to take the advantages of the efficient algorithms of the serial chain
manipulators for the analysis of PKMs, the common methods to deal with their
closed-loops are: (i) to cut the loops, introduce Lagrange multipliers to substitute
for the cut joints, and apply the recursive scheme for the cut loops [16], and others;
(ii) to use the close-loop constraints to relate the unactuated joint rates in terms
of the actuated joint rates, and obtain a set of independent dynamics equations of
motion [17]. The concept of an orthogonal complement, namely, the Natural Or-
thogonal Complement (NOC) was introduced in [18]. The NOC is defined as the
linear transformation that maps the independent joint velocities into the general-
ized twist of the system. The matrix is an orthogonal complement of the velocity
constraint matrix [18] arising out of the joints present in the system. The dynamic
modeling based on the NOC was found advantageous in [19, 20] and others. The
derivation of the NOC for closed-loop systems is tedious because the explicit ex-
pressions of the loop-constraint equations and the associated Jacobian matrices
must be derived. To avoid the abovementioned difficulty, a numerical method,
proposed in [21], was used in [22], and others. Recently, Xi and Sinatra [23] re-
ported the inverse dynamics of hexapods with fixed length legs using the NOC
matrix.

On the other hand, Saha [24] expressed the NOC, explicitly, as a product
of two matrices, namely, a block lower triangular and a block diagonal. Some
of the advantages due to this approach are: (i) Many physical interpretations of
the vectors and matrices, e.g., twist-propagation matrix, etc.; (ii) Recursive in-
verse and forward dynamics algorithms, and others. Saha and Schiehlen [25]
showed that the NOC of a closed-loop parallel manipulator can be split into
three matrices, namely, the lower-block triangular, the full-block, and the block-
diagonal. Later, however, Khan [26] used the concept of the DeNOC for the
closed-loop systems to show that the methodology can be suitably adopted for
parallel computations in multi-platform computers. In the present work, the dy-
namic model of hexaslides based on the DeNOC matrices, which facilitates par-
allel computations, is developed. Unlike in Xi and Sinatra [23], the masses and
inertias of all moving bodies including the sliders are considered in the proposed
model.

This paper is organized as follows: Section 2 presents the kinematic analysis
of hexaslides required for the dynamic modeling, as given in Section 3. A parallel
inverse dynamics algorithm is proposed in Section 4. The use of the proposed
algorithm is illustrated with an existing machine tool based on hexaslides, namely,
the HexaM [4, 15, 27], while carrying out a circular contouring in Section 5. Effect
of the inertia of different bodies is presented in Section 6. Finally, the conclusions
are given in Section 7.
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Figure 3. The i th kinematic chain of a hexslide.

2. Knematic Analysis

In this section, kinematic analysis, i.e., the relations between the positions and
velocities of varies bodies, namely, the sliders and tool platform, of a hexaslide are
derived. Using the loop mobility criteria [6], the DOF of a general hexaslide can be
obtained as six. First, the following notations are introduced: Referring to Figure 3

O-XYZ: Fixed frame of reference attached to the base;
Op-xyz: Moving frame attached to the tool platform;
OP: mass centre of the end-effector, i.e., the tool platform; R: The 3×3 Rotation

matrix representing the orientation of the moving frame, Op-xyz, with rerespect to
the fixed frame, O-XYZ.

p ≡ OOP ≡ [px, py, pz]T: The position of the mass center of the moving platform
in the fixed frame, where px, py and pz are the three Cartesian coordinates of the
the point OP; and for i = 1, 2, . . . , 6

Li ≡ Ui Bi : Length of the ith leg;
Si ≡ Ai Ei : Length of the ith rail or stroke length of the ith actuator;
di : Distance of the ith slider from the starting point of ith rail;
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ui : Unit vector along the ith rail-axis;
ei : Unit vector along the ith leg;
ai ≡ OAi : Position vector of Ai with respect to the origin of the fixed frame;
di ≡ Ai Ui = di ui : Position vector of Ui with respect to point Ai ;
li ≡ Ui Bi = Li ei : Vector denoting the length of the i th leg;
si ≡ Ai Bi : Position vector of the center of the ith spherical joint on the tool platform;
psi ≡ OBi : Position vector of Bi with respect to the origin of the fixed frame;
r′i ≡ OPBi : Position vector of Bi with respect to the reference point, i.e., point OP,

represented in the moving frame;
ri ≡ OPBi : Position vector of Bi with respect to the reference point, i.e., point OP,

represented in the fixed frame;
C1i and C2i : mass centres of the 1st and 2nd links of the ith chain, i.e., slider and

leg, respectively;
cP, vP, and v̇P: 3-dimensional position, velocity and acceleration vectors of the mass

centre, OP, respectively;
c1i and c2i : 3-dimensional position vectors of mass centres, C1i and C2i , respectively;
v1i and v2i : 3-dimensional velocity vectors of mass centres, C1i and C2i , respec-

tively;
v̇1i and v̇2i : 3-dimensional acceleration vectors of mass centres, C1i and C2i , re-

spectively;
ωP and ω̇P: 3-dimensional angular velocity and acceleration vectors of the tool

platform;
ω1i and ω2i : 3-dimensional angular velocity vectors of 1st and 2nd links of the ith

chain, respectively;
ω̇1i and ω̇2i : 3-dimensional angular acceleration vectors of 1st and 2nd links of the

ith chain, respectively.

However, ω1i = ω̇1i = 0, since the 1st link of any chain, i.e., slider, has only
translation.

2.1. POSITION ANALYSIS

Considering the loop, O Ai Ui Bi Op O, Figure 3, the vector si , for i = 1, 2, . . . , 6,
is written as,

si ≡ p + Rr′
i − ai = di + li (1)

Noting that, ri = Rr′
i , and di ≡ di ui , and li ≡ Li ei , Equation (1) can be

rewritten as

si − di ui = Li ei (2)
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Performing the dot products of the left and right hand vectors of (2), one obtains

(si − di ui )
T (si − di ui ) = L2

i (3)

where eT
i ei = 1 is used. Solution of (3) gives an explicit expression for di as

di=
(
sT

i ui
) ±

√(
sT

i ui
)2 − (

sT
i si − L2

i

)
, for i = 1, 2, . . . , 6 (4)

Using (4), the inverse kinematics problem, i.e., to find the position of the actuators
on their respective rails, di , for a given pose of the tool platform, i.e., p and R, can
be solved. Note that, (4) offers two values of di , say, di

(1) and di
(2). The given pose

of the tool platform is said to be achievable if the values of di satisfy the constraint:

0 ≤ di ≤ Si for i = 1, 2, . . . , 6 (5)

and the constraints due to the allowed motion range of the universal and spherical
joints.

2.2. VELOCITY ANALYSIS

The relations between the velocities of the tool platform and the actuators of a
hexaslide are derived. Differentiation of (1) with respect to time yields

ṡi = ṗ + Ṙr
′
i + Rṙ′

i − ȧi = ḋi + l̇i (6)

Noting, ṗ ≡ vp, ṙ′
i = 0, Ṙr

′
i = ωp × Rr′

i , ȧi = 0, ḋii = ḋi ui , and l̇i = ω2i × li ,
wherein ḋi is the linear speed of the ith actuator, the above equation, (6), is rewritten
as

ḋi ui = vp + ωp × ri − ω2i × li (7)

Taking the dot product of ei on both sides of (7) yields

ḋi l
T
i ui = lTi

[
vp + ωp × ri

]
(8)

where lTi (ω2i × li ) = 0 is used. Combining (8), for i = 1, 2, . . . , 6, in a matrix form
yields

Jaḋ = JttP (9)
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where tP ≡ [
ωT

p vT
p

]T
: the 6-dimensional vector of the end-effector twist; ḋ ≡[

ḋ1 · · · ḋ6
]T

: the 6-dimensional vector of actuator rates; and the 6 × 6 matrices,
Ja and Jt, are given by

Ja ≡

⎡⎢⎢⎢⎢⎣
eT

1 u1

·
·
·

eT
6 u6

⎤⎥⎥⎥⎥⎦ ; and Jt ≡

⎡⎢⎢⎢⎢⎣
(r1 × e1)T eT

1
· ·
· ·
· ·

(r6 × e6)T eT
6

⎤⎥⎥⎥⎥⎦ (10)

Equation (9) can be rewritten as

ḋ = JtP, where J ≡ J−1
a Jt (11)

where the 6 × 6 matrix, J, is known as the velocity Jacobian matrix of the tool
platform. Now, referring to Figure 3, the following can be written:

cP = p; c1i = ai + di ui ; c2i = c1i + lci (12a)

where lci is the 3-dimensional vector of mass centre of ith leg. Time derivative of
(12a)

vP = ċP = ṗ; v1i = ḋi ui ; v2i = v1i + ω2i × lci (12b)

where u̇i = 0 is used. Time derivative of (12b) yields

v̇P = c̈P = p̈; v̇1i = d̈i ui ; v̇2i = v̇1i+(ω̇2i × lci )+ω2i×(ω2i × lci ) (12c)

2.2.1. Angular velocity of legs

In this section, angular velocity of legs, ω2i , is derived. Equation (7) is expressed
as

�liω2i = −1

Li
[vp − �riωp − ḋi ui ] (13)

where the 3 × 3 skew-symmetric matrices, namely, �li and �ri , are the cross-
product matrices associated with vectors ei and ri , respectively. A cross-product
matrix, X, associated with the vector, x, is defined as, X ≡ x × 1, such that,
Xa ≡ x × a, for any arbitrary vector a, and 1 being the 3 × 3 identity matrix.
In order to find ω2i , (13) alone cannot be used since �li is always singular. The
universal joint, Ui , constrains the orientation of each leg allowing only 2-DOF
rotation. This can be expressed as

(u1i × u2i )
Tω2i = 0 (14)
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for i = 1, 2, . . . , 6. Vectors u1i and u2i are the unit vectors along the 1st and 2nd axes
of the ith universal joint, respectively. Equation (14) signifies that the component of
the angular velocity of the ith leg along the axis orthogonal to u1i and u2i vanishes.
For the universal joints, u1i is assumed to be attached to the ith rail, and hence, is
independent of pose of the tool platform. The vector u2i is configuration dependent,
and is expressed as

u2i = u1i × ei (15)

Substitution of (15) in (14) and simpification yields(
�2

ui ei
)T

ω2i = 0 (16)

where �ui is the 3 × 3 cross-product matrix associated with vector u1i , as defined
after (13), and �2

ui ≡ �ui�ui = u1i u
T
1i − 1, for i = 1, 2, . . . , 6. Combining (13)

and (16), one gets

Ãiω2i = �i (17a)

wherein the 4 × 3 matrix, Ãi , and the 4-dimensional vector, �i , are as follows:

Ãi ≡
[

�li

(�2
ui ei )T

]
and �i ≡ −1

Li

[
vp − �riωp − ḋi ui

0

]
(17b)

Using the definition of Moore-Penrose generalized inverse for the overdeter-
mined system of equations [28], the angular velocity of the ith leg, ω2i , can be
found from (17a) as

ω2i = Ã
†
i �i (18)

where Ã
†
i ≡ (ÃT

i Ãi )−1ÃT
i . Note that in slow operation of the tool platform, the spin-

ning of each leg about its own longitudinal axis is negligible [6]. This assumption
leads to the simplified explicit expression for the angular velocity of each leg, ω2i .
Taking the cross product of li on both sides of (7) and rearranging the terms, one
gets

li × (ω2i × li ) = li × [vp + (ωp × ri ) − ḋi ui ] (19)

Equation (19) simplifies as

ω2i ≡ 1

Li
�li [vp − �riωp − ḋi ui ] (20)

where lTi ω2i = 0 is used, as it refers to the component of the angular velocity of the
ith leg about its longitudinal axis which is neglected.
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2.2.2. Angular acceleration of legs

Differentiation of (17a) with respect to time yields

Ãi ω̇2i = �̄i (21a)

for i = 1, 2, . . . , 6. In (21a), the 4-dimensional vector, �̄i , is given by

�̄i ≡
[ −1

Li
[{v̇p − �ri ω̇p + �2

pri − d̈i ui } − {�2i (vp − �riωp − ḋi ui )}]
[�2

ui�liω2i ]Tω2i

]
(21b)

where �P and �2i are the 3 × 3 cross-product matrices associated with ωP and
ω2i , respectively, and d̈i is the acceleration of slider along the rail of ith chain.
Differentiating (7) with respect to time and taking the dot product of ei on both
sides gives

d̈i = δi [v̇p − �ri ω̇p + �2
pri − �2

2i li ]
Tei , where δi = 1

eT
i ui

(21c)

Using (21a), the angular acceleration of the ith leg, ω̇2i , is obtained as

ω̇2i = Ã
†
i �̄i (22)

Similar to the simplified explicit expression of the angular velocity of the ith
leg, ω2i of (20), the angular acceleration, ω̇2i , is given from the time differentiation
of (20) as

ω̇2i ≡ 1

Li

[
�̇li {vp − �riωp − ḋi ui } + �li {v̇p − �ri ω̇p + �2

pri − d̈i ui }
]

(23)

where the 3 × 3 matrix, �̇li ≡ (ω2i × ei ) × 1, denotes the time derivative of �li .

3. Dynamic Modelling

Following the terminology and basic concepts [8], the uncoupled NE equations of
motion necessary for the dynamic modelling of hexaslides are obtained first. The
6-dimensional twist and twist rate vectors of the jth body in the ith chain of the
hexaslide, namely, t j i and ṫ j i , respectively, are

t j i ≡ [
ωT

j i vT
j i

]T
and ṫ j i ≡ [

ω̇T
j i v̇T

j i

]T
(24a)

where the translational velocity and acceleration, namely, v j i and v̇ j i , are associated
with mass centre of the jth body in the ith chain. The 6r-dimensional vectors, r being
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the total number of rigid bodies, namely, the generalized twist and generalized twist
rate of the whole system are

t ≡ [
tT
11 · · · tT

q1 · · · tT
1n · · · tT

qn tT
P

]T
and ṫ ≡ [

ṫT
11 · · · ṫT

q1 · · · ṫT
1n · · · ṫT

qn ṫT
P

]T
(24b)

where tP and ṫP are the twist and twist rate of the tool platform, respectively; q and
n are the number of bodies in each chain and the number of kinematic chains in the
hexaslide under study, respectively.

The NE equations of motion for the hexaslide can be put in a compact form as

Mṫ + WMt = wW + wC (25a)

where the 6(nq + 1) × 6(nq + 1) generalized mass and angular velocity matrices,
M and W, respectively, are expressed as

M ≡ diag
[
M11, · · ·, Mq1, · · ·, M1n, · · ·, Mqn, Mp

]
;

W ≡ diag
[
W11, · · ·, Wq1, · · ·, W1n, · · ·, Wqn, Wp

]
(25b)

in which the 6 × 6 matrices, M j i and W j i , are the extended mass and extended
angular velocity of the jth body in the ith chain, respectively, which are defined by

M j i ≡
[

I j i O

O m ji 1

]
; and W j i ≡

[
� j i O

O O

]
(25c)

In (35c), I j i , m ji , and � j i are the inertia tensor, mass, and angular velocity matrix
associated with ω j i , respectively, of the jth body in the ith chain; whereas O and
1 are the 3×3 null and identity matrices, respectively. The 6(nq + 1)-dimensional
working and nonworking constraint generalized wrenches, wW and wC , in (25a)
are defined as

wW ≡
[
wW T

11 · · · wW T

q1 · · · wW T

1n · · · wW T

qn wW T

P

]T
, and

wC ≡
[
wCT

11 · · · wCT

q1 · · · wCT

1n · · · wCT

qn wCT

P

]T
(25d)

for j = 1, 2, . . . , q; i = 1, 2, . . . , n. Note that the working wrench, wW
ji , includes

the moments and forces due to actuators, wa
ji , gravity, w

g
ji , dissipation, wd

ji , and
externally applied, we

ji . The matrices Mp and Wp in (25b) and the wrenches wW
p

and wC
p in (25d) are related to the tool platform.
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3.1. DECOUPLED NATURAL ORTHOGONAL COMPLEMENT MATRICES

The decoupled natural orthogonal complement (DeNOC) matrices, necessary to
obtain the set of n − n being the number of independent kinematic chains of
the hexaslide under study which is also equals to its DOF—independent dynamic
equations of motion, are derived in this section. The latter is obtained here without
any complex partial differential equations [6]. Moreover, the use of DeNOC allows
one to compute many terms, e.g. t j i , ṫ j i , recursively and parallely.

Referring to Figure 3, the twists of the 1st and 2nd moving bodies, namely, slider
and leg, of ith kinematic chain of the hexaslide can be expressed as

t1i ≡
[

ω1i
v1i

]
= pi ḋi and t2i ≡

[
ω2i
v2i

]
= (1 + C̄i D̄Ai )t1i + C̄i D̄Pi tP (26a)

where the 6-dimensional vector, pi , and the 6 × 3 matrix, C̄i , are defined as

pi ≡
[

0

ui

]
; C̄i ≡

[
1

�ci

]
(26b)

In (26b), the 3 × 3 cross-product matrix, �ci , is associated with the vector, lci ,
shown in Figure 3, and the 3×6 matrices D̄Ai and D̄Pi in (26a) are given by

D̄Ai = Ã
†
i DAi ; and D̄Pi = Ã

†
i DPi (26c)

In (26c), the 4 × 6 matrices DAi and DPi are given by

DAi = 1

Li

[
O 1

0T 0T

]
; and DPi = 1

Li

[
�ri −1

0T 0T

]
(26d)

Note that 0 of (26b) and (26d) refers to the 3-dimensional null vector. It may
also be noted that when simplified expression of the leg angular velocity, ω2i , given
by (20) is used, D̄Ai and D̄Pi of (26a) take the following form, instead of those given
by (26c):

D̄Ai = 1

Li

[
O −�li

]
; and D̄Pi = 1

Li
�li

[−�ri 1
]

(26e)

Since each kinematic chain of the hexaslide has two bodies, namely, the slider
and leg, respectively, there are only two recursive expressions given in (26a). For
each chain, another 12-dimensional vector, namely, the chain-twist, t̃i , is then in-
troduced as

t̃i ≡ [
tT
1i tT

2i

]T = PPi tP + PAi pi ḋi (27a)
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where the 12 × 6 matrices, PPi and PAi are given by

PPi ≡
[

O

P̄Pi

]
; PAi ≡

[
1

P̄Ai

]
(27b)

in which P̄Ai ≡ 1+C̄i D̄Ai , and P̄Pi ≡ C̄i D̄Pi . The generalized twist of the hexaslide,
t of (24b), is then written from (27b), for i = 1, 2, . . . , n, as

t ≡ PPtP + PATdḋ (28a)

where the 6(nq + 1)-dimensional vector, t, is defined as

t ≡ [
t̃T
1 · · · t̃T

n tT
P

]T
; where t̃i ≡ [

tT
1i · · · tT

qi

]T
(28b)

Moreover, the 6(nq + 1) × 6 matrix, PP, the 6(nq + 1) × 6n matrix, PA, the
6n × n matrix, Td, and the n-dimensional joint rate vector, ḋ, are given by

PP ≡

⎡⎢⎢⎢⎢⎢⎢⎣
PP1

·
·
·

PPn

1

⎤⎥⎥⎥⎥⎥⎥⎦ ; PA ≡

⎡⎢⎢⎢⎢⎢⎢⎣
PA1 O

·
·
·

O PAn

O O

⎤⎥⎥⎥⎥⎥⎥⎦ ; Td ≡

⎡⎢⎢⎢⎢⎣
p1 0

·
·
·

0 pn

⎤⎥⎥⎥⎥⎦ ; and ḋ ≡

⎡⎢⎢⎢⎢⎣
ḋ1

·
·
·

ḋn

⎤⎥⎥⎥⎥⎦ (28c)

Note that for the hexaslide under study, n = 6 and q = 2. Hence, in (28c), PP,
PA, and Td are the 78 × 6, 78 × 36, 36 × 6 matrices, respectively, whereas ḋ is
the 6-dimensional vector. Also, from (9), the twist of the tool platform, tP, can be
expressed as

tP = J−1
t Jaḋ (29)

where the 6 × 6 matrices, Jt and Ja, are given in (10). In (29), the matrix Ja is
rewritten as

Ja = PlTd, where Pl ≡ diag[ pT
l1 · · · pT

ln ] (30)

in which the 6-dimensional vector, pli ≡ [
0T eT

i

]T
, for i = 1, 2, . . . , n. Substituting

(30) into (28a), the generalized twist, t, is rewritten as

t = Tḋ, where T ≡ ThTd (31a)

wherein the 6(nq + 1) × 6n or the 78 × 36 matrix, for n = 6 and q = 2, Th, is
given as

Th ≡ PPJ−1
t Pl + PA (31b)
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In (31a), the 6(nq + 1) × 6 matrix, T, is nothing but the NOC matrix of the
hexaslide, whereas the 6(nq +1)×6n matrix, Th, and the 6n ×n matrix, Td, are the
DeNOC matrices. Note that, the DeNOC matrices for the hexaslide, are full block,
Th, and block diagonal, Td. Saha and Schiehlen [25] showed that a closed-loop
parallel-chain system has three DeNOC matrices, which is not the case here. This
is due to the fact that, in [25], the moving platform was divided into several parts.
Each part was then considered as the last body of a serial-chain. As a result, a lower
block triangular matrix, similar to the serial-chain system, could be extracted. Such
formulation for the hexalides under study would require the information on the
joint angles, rates and accelerations of the unactuated joints, which otherwise are
not required. So, an alternate approach is followed, where the twists of all the bodies
are expressed in terms of the twist of the moving platform and the joint rates.

3.2. COUPLED DYNAMIC EQUATIONS

As in [18], pre-multiplication of TT to the uncoupled NE equations, (25a), leads to

TT(Mṫ + WMt) = TT(wW + wC ), where T ≡ ThTd (32)

In (32),TTwC = 0, as the constraint wrenches do not perform any work. Upon
substitution of t = Tḋ, ṫ = Ṫḋ + Td̈, and Ṫd = O, (32) takes the form

Id̈ + Cḋ = τ (33)

where I = TT
d M̃Td : the n × n generalized inertia matrix (GIM) of the hexaslide

system at hand; C = TT
d (M̃d + M̃h)Td : the n × n generalized matrix of convective

inertia terms; and τ = TT
d w̃W : the n-dimensional vector of generalized forces due

to actuators, gravity and other external moments and forces. The 6n × 6n matrices,
M̃, M̃d, M̃h and the 6n-dimensional vector, w̃W , are expressed as

M̃ = TT
h MTh; M̃d = TT

h MṪh; M̃h = TT
h WMTh; and w̃W = TT

h wW (34)

Furthermore, each element of the matrices and vectors of (33) can be written
explicitly. For example, the (i, j) element of the GIM, i.e., ii j , is given by

ii j = pT
i M̃i j p j (35)

where the 6 × 6 symmetric matrix, M̃i j , can be computed as

M̃i j = M1 j +
(

n∑
k=1

HT
ki M2kHk j

)
+ HT

Pi MPHP j for i = j (36a)
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=
(

n∑
k=1

HT
ki M2kHk j

)
+ HT

Pi MPHP j for i �= j (36b)

In (36), the 6 × 6 matrices, M2k and MP are the mass matrices for the 2nd body,
i.e., leg, of the kth chain and the tool platform, respectively. The 6 × 6 matrices,
Hk j and HPi , are the block elements of matrix Th. Equation (33) is nothing but the
n-independent EL equations of motion, which are obtained without any complex
partial differentiation.

4. Inverse Dynamics Algorithm

An inverse dynamics algorithm, useful for power estimation of the actuator motors,
control and others, is presented here. In inverse dynamics, the tool platform motions
are given as input to find all the actuator forces, i.e., vector τ of (33). The matrices, I,
C, etc., need not be calculated explicitly. These are, however, useful for the forward
dynamics [25, 26]. The following is proposed inverse dynamics scheme:

S-1: Solve the inverse kinematics to obtain di , ḋi , and d̈i .
S-2: Calculate the twist and twist rates of all the bodies t j i and ṫ j i recursively.
S-3: Find the matrices M j i , MP, W j i and WP.
S-4: Compute the 6-dimensional wrenches, w j i and wP of (25d), as

w j i = M j i ṫ j i + W j i M j i t j i − w
g
ji − wd

ji − we
ji ; and

wP = MPṫP + WPMPtP − w
g
P − wd

P − we
P (37)

S-5: Find the DeNOC matrices in two stages, namely,
(i) The generalized twist, t, is related with dependent generalized velocities, ψ̇ ,

as

t ≡ T̄hT̄dψ̇ where ψ̇ ≡ [
ḋT tT

P

]T
(38a)

In (38a), T̄h and T̄d are the 6(nq + 1) × 6(n + 1) and 6(n + 1) × (n + 6) DeNOC
matrices with respect to the dependent generalized velocities,ψ̇ , given as

T̄h ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
1

P̄A1

] [
O

O

] [
O

P̄P1

]
· ·
· ·
· ·[

O

O

] [
1

P̄An

] [
O

P̄Pn

]
O · · · O 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; and T̄d ≡

⎡⎢⎢⎢⎢⎢⎢⎣
p1 0 O

· ·
· ·
· ·

0 pn O

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (38b)



DYNAMICS MODELLING OF HEXASLIDES 173

in which 0s, Os, and 1s refer to the 6-dimensional null vectors, the 6 × 6 null
matrices, and the 6 × 6 identity matrices, respectively.

(ii) The dependent generalized velocities, ψ̇ , are related with the independent
joint rates, ḋ, as

ψ̇ = Tnḋ, where the (n + 6) × n matrix, Tn ≡
[

1

J−1

]
(39)

Note that, T=T̄hT̄dTn = ThTd. Hence, the DeNOC matrices are obtained here
in two stages, as a multiplication of three block matrices, T̄h, T̄d, and Tn. Hence,
premultiplication of TT with the uncoupled equations of motion, (25a), produces
the required actuator forces, τ a = TTw.

S-6: Compute the 6-dimensional vectors, τ (I) and w̄2i , which are associated with the
resultant vector obtained from the premultiplication of the DeNOC matrices
with respect to the dependent joint rate vector, ψ̇ , (38a), with the uncoupled NE
equation, (25a), i.e., T̄T

d T̄T
h w, where the elements of the generalized wrench,

w defined similar to (25d), are evaluated in Step-4. Vectors τ (I) and w̄2i are
defined as

τ (I) = [
τ

(I)
1 · · · τ

(I)
6

]T
, and w̄2i = P̄T

Pi w2i (40)

where τ
(I)
i = pT

i (w1i + P̄T
Ai w2i ) for i = 1, 2, . . . , 6.

S-7: Compute the 6-dimensional vector, τ (II), as a part of the vector resulting from
the multiplication of TT

n with the vector obtained from the premultiplication
of the transpose of the DeNOC matrices associated with the dependent joint
rate vector with the uncoupled NE equations of motion, i.e.,

τ (II) = JT
a J−T

t

(
wP +

6∑
i=1

w̄2i

)
(41)

S-8: Compute the 6-dimensional vector consisting of the actuator forces, τ a
i , as

τ a = τ (I) + τ (II) (42)

The above relations allow parallel computations similar to that reported in [13].
The scheme of parallel computations is shown in Figure 4. The complexity of the
proposed algorithm is linear in terms of the total number of bodies, r, i.e., O(r).
The algorithm is implemented in MATLAB. Even though the proposed algorithm
is suitable for the parallel computations, it could not be practically realized due to
the non-availability of suitable software and hardware to connect several computers
to run parallel.
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Figure 4. Parallel computations for the inverse dynamics algorithm.

5. An Illustration: Circular Contouring of the HexaM

An illustration of the invese dynamics algorithm proposed in Section 4 is presented
here considering an existing machine tool based on hexaslides, namely, the HexaM
[4, 15, 27]. The architecture of the HexaM is shown in Figure 5, whose geometric
parameters are given in Table I. Note that, each column on the right hand sides
of the vectors ai , ēi , and r′

i , in Table I, represent the three position coordinates of
point Ai in fixed frame, point Ei in fixed frame, and point Bi in the moving frame,
respectively, for i = 1, 2, . . . , 6.

The mass and inertia properties, taken from Kim and Ryu [15] for the comparison
of inverse dynamics results, are:

• Mass of each slider, ms = 0.9963 kg
• Mass of each leg, ml = 2.1729 kg
• Mass of the platform, mp = 10.7673 kg
• Mass moment of inertia of the tool platform about its centroidal axes, i.e., ĪP,

ĪP = diag [0.118, 0.118, 0.236] kg-m2

• Mass moment of inertia of each leg about its centroidal axes, i.e., Īl , Īl =
diag [0.140, 0.140, 0.000] kg-m2

• Acceleration due to gravity, g = 9.81 m/s2

• Length of each leg, i.e., Li for i = 1, 2, . . . , 6, namely, L = 0.9 m.
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Figure 5. The kinematic sketch of HexaM.

Table I. Geometric Parameters of The HexaM

i 1 2 3 4 5 6

ai ≡
⎡⎣ ai X

aiY

ai Z

⎤⎦ ⎡⎣ 0.9157
0.1100
0.0000

⎤⎦ ⎡⎣ −0.3625
0.8480
0.0000

⎤⎦ ⎡⎣ −0.5531
0.7380
0.0000

⎤⎦ ⎡⎣ −0.5531
−0.7380
0.0000

⎤⎦ ⎡⎣ −0.3625
−0.8480
0.0000

⎤⎦ ⎡⎣ 0.9157
−0.1100
0.0000

⎤⎦
ēi ≡

⎡⎣ ēi X

ēiY

ēi Z

⎤⎦ ⎡⎣ 0.3095
0.1100

−0.3500

⎤⎦ ⎡⎣ −0.0594
0.3230

−0.3500

⎤⎦ ⎡⎣ −0.2500
0.2130

−0.3500

⎤⎦ ⎡⎣ −0.2500
−0.2130
−0.3500

⎤⎦ ⎡⎣ −0.0594
−0.3230
−0.3500

⎤⎦ ⎡⎣ 0.3095
−0.1100
−0.3500

⎤⎦
r′

i ≡
⎡⎣ r ′

i X
r ′

iY
r ′

i Z

⎤⎦ ⎡⎣ 0.1100
0.1229
0.0000

⎤⎦ ⎡⎣ 0.1615
0.0337
0.0000

⎤⎦ ⎡⎣ 0.0515
−0.1567
0.0000

⎤⎦ ⎡⎣ −0.0515
−0.1567
0.0000

⎤⎦ ⎡⎣ −0.1615
0.0337
0.0000

⎤⎦ ⎡⎣ −0.1100
0.1229
0.0000

⎤⎦

The tool trajectory, as shown in Figure 6, is taken as

• Circular contour on the XY-plane with uniform speed, N = 40 rpm about
Z-axis

• Radius of circle, Rc = 0.1 m
• Coordinates of the circle center, Cc = (pX , pY , pZ ) = (0, 0, −0.11)
• Position vector of the center of tool platform with reference to the origin of

fixed frame, p ≡ [
pX + RC cos θ pY + RC sin θ pZ

]T
, where ‘θ ’ is the angular

position of the tool center point (TCP) with respect to reference axis, as shown
in Figure 6.
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Figure 6. Schematic depicting the circular trajectory.

In order to validate the inverse dynamics results, the dissipative and external
wrenches on the tool platform at the TCP are not considered similar to that in [15].
The actuator or the controlling forces obtained using the proposed inverse dynamics
algorithm are shown in Figure 7, which exactly match with those reported in [15].
The actuator forces are also obtained using the numerical NOC calculation, as in
[22] for the hexapods. The maximum deviation in the results is in the order of
10−12 N, which is negligible. Even though the results from the proposed DeNOC
and the numerical NOC based algorithms are same, the advantages of the former
lie in its faster O(r) computational complexities. Using the single processor, the
DeNOC based inverse dynamics algorithm took only 4s in a P IV processor-1.8
GHz, whereas the numerical NOC [22] took 6.8s. This is obvious since a total of
O(nr) computations will be required to find the complete NOC.

6. Effect of Leg and Slider Inertias

In order to simplify the dynamic model of hexaslides, the researchers tend to neglect
the mass and inertia of the sliders and or legs. An attempt is made, in this section,
to study the effect of the leg and slider inertias. The actuator forces are found
considering with and without the leg and slider inertias. The following three cases
are studied:

Case 1: Consider tool platform and leg, i.e., neglect only slider inertias;
Case 2: Consider tool platform and slider, i.e., neglect only leg inertias; and
Case 3: Consider only tool platform inertia, i.e., neglect both the leg and slider

inertias.
All the above three cases are compared with those when the inertias of all the

bodies, i.e., the tool platform, legs and sliders, are considered. For this investigation,
the HexaM with the geometric and inertia properties same as that in Section 5 is
considered. The tool trajectory is also taken same as that considered in Section 5.
The variation of the actuator forces due to the inertia of various bodies when the
operating speed of the tool platform is 40rpm is shown in Figure 8. It may be noted
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Figure 7. Actuator forces during circular contouring.

that the influence of the leg inertia on the actuator forces is more when compared to
the slider inertia. The same is evident even from the plot of the maximum difference
in the actuator forces, Figure 9. The difference in the actuator forces for Case 1 is
computed as the differences in the actuator forces while the slider inertia is neglected
from those considering the inertias of all the bodies. It may also be observed that
the maximum difference in the actuator forces increase drastically at higher speeds
of the tool platform for all the three cases of study. Moreover, there are significant
differences in the actuator forces for all the three cases even at relatively low speed,
N = 40 rpm. Hence, it is advisable not to neglect the slider and leg inertias while
computing the actuator forces for the hexaslides.

7. Conclusions

In this paper, dynamic model of a general hexaslide based on the decoupled natural
orthogonal complement (DeNOC) matrices is proposed. All the moving bodies,
including the sliders of the hexaslide are considered during the dynamic analysis.
The DeNOC matrices of hexaslides offer the following features: (i) Natural devel-
opment of parallel inverse dynamics algorithm; (ii) Explicit analytical expressions
for the generalized inertia matrix (GIM) and others that are useful for debugging,
and checking the effects of mass and inertias of the sliders or legs; (iii) Recursive
forward dynamics algorithms, as shown in [25]. It is shown how the proposed in-
verse dynamics algorithm perform better compared to the numerical evaluation of
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Figure 8. Effect of different inertia on actuator forces (N = 40 rpm).

Figure 9. Variation in maximum difference of actuator forces.
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the NOC matrix. The inverse dynamics for the HexaM is carried out implementing
the proposed algorithm while its TCP performs a circular contouring. The agree-
ment in the results with those reported in [16] validates the proposed algorithm.
The actuator forces obtained are useful for the design of a hexaslide where its motor
specifications are required for an application. Besides, the model can be used for
the dynamics based control purposes. Secondly, the effect of leg and slider inertias
is also studied, which clearly suggests that neither of these can be neglected while
finding the actuator forces.
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